Organic Matter in Soil of Coal Mine Dumps in Siberia: Quantitative and Qualitative Assessment
Currently, due to the issues related to carbon emissions and sequestration, particular interest is being drawn towards technogenic landscapes represented by coal mine spoil heaps. First, this is due to the significant presence of potential sources of climate-active gases in the form of carbonaceous particles within the spoil heaps. Second, the accumulation of organic carbon in the form of humus substances occurs as a result of soil formation on the surface of technogenic landscapes. Given that the area of disturbed coal mining territories in certain regions amounts to hundreds of thousands of hectares and continues to increase, research on coal mine spoil heaps is necessary for the development of measures to achieve carbon neutrality. The research was conducted on old dumps (over 30 years old) coal mining enterprises in the Kuznetsk (Kemerovo Oblast), Gorlovka (Novosibirsk Oblast), and Kansk-Achinsk (Krasnoyarsk Krai) coal basins, Minusinsk (Republic of Khakassia) and Ulu-Khem (Republic of Tuva) deposits, within lithogenetic and geographic sequences (see the Table). The dumps comprise fragmented dense sedimentary rocks and clayey rocks. The objects of the study were non-carbonate soils of coal mine spoil heaps - initial, organo-accumulative, soddy, and humus-accumulative embryosols (Spolic and Hyperskeletic Technosols). Field morphological descriptions of embryosol profiles were conducted using conventional soil science methods. The carbon and nitrogen content were determined by dry combustion using a CHN analyzer and by wet combustion method with oxidation of 0.4N K2Cr2O7 in 50% sulfuric acid solution, heated to 150°C in a drying cabinet. The calculation of the ratio of carbon determination results provides an indication of the degree of pedogenic maturity of organic matter. Research results have shown that the content of organic carbon determined by wet and dry combustion methods in embryosols significantly differs in evolutionary, geographical, and lithogenetic sequences of objects (see the Figures). The degree of pedo-genic maturity expressed through the ratio of carbon determined by different methods has been applied to assess the qualitative state of organic matter systems and their transformation. It has been demonstrated that the maximum values of pedogenic maturity were found in the studied embryosols of Brown Coal deposits, ranging from 63.8% to 100%. The minimum values were observed in embryosols on the spoil heaps of Anthracite deposits. It has been established that the degree of pedogenic maturity increases in the evolutionary sequence of embryosols, with humus-accumulative em-bryosols showing values within the range characteristic of zonal black soils (see the Figures). Research results have shown the stability of organic matter to oxidation and its ability to persist unchanged in the substrate of coal spoil heaps for a long time. Along with the processes of organic matter accumulation during soil formation, this allows us to conclude that the Siberian coal spoil heaps do not release carbon, but, on the contrary, sequester it. The article contains 4 Figures, 1 Table, 42 References. The Authors declare no conflict of interest.
Keywords
Technosols,
soil formation in technogenic landscapes,
soil organic matter,
coal mine dumps,
SiberiaAuthors
Sokolov Denis A. | Institute of Soil Science and Agrochemistry SB RAS | sokolovdenis@issa-siberia.ru |
Gurkova Evgeniya A. | Institute of Soil Science and Agrochemistry SB RAS | gurkova@issa-siberia.ru |
Osintseva Maria A. | Kemerovo State University | k1marial@inbox.ru |
Burova Nadezhda V. | Kemerovo State University | centrla@mail.ru |
Всего: 4
References
Sokolov D.A., Androkhanov V.A., Abakumov E.V. Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (Review) // Tomsk State University Journal of Biology. 2021. № 56. PP. 6-32.
Дергачева М.И. Система гумусовых веществ почв. Новосибирск: Наука СО, 1989. 110 с.
Androkhanov V.A., Sokolov D.A. Fractional composition of redox systems in soils of coal mine dumps // Eurasian Soil Science. 2012. № 45. PP. 399-403.
Соколов Д.А. Специфика определения органических веществ педогенной природы в почвах техногенных ландшафтов Кузбасса // Вестник Томского государственного университета. Биология. 2012. № 2 (18). С. 17-25.
Vinduskova O., Dvoracek V., Prohaskova A., Frouz J. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy // Ecological Engineering. 2014. Vol. 73. PP. 643-648.
Rumpel C., Kogel-Knabner I. The role of lignite in the carbon cycle of lignite-containing mine soils: evidence from carbon mineralization and humic acid extractions // Organic Geochemistry. 2002. Vol. 33 (3). PP. 393-399.
Querol X., Zhuang X., Font O., Izquierdo M., Alastuey A., Castro I., van Drooge B.L., Moreno T., Grimalt J.O., Elvira J., Cabanas M., Bartroli R., Hower J.C., Ayora C., Plana F., Lopez-Soler A. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data // International Journal of Coal Geology. 2011. Vol. 85 (1). PP. 2-22.
Frouz J., Vinduskova O. Soil organic matter accumulation in postmining sites: Potential drivers and mechanisms // Soil Management and Climate Change. London: Academic Press, 2018. Chapter 8. PP. 103-20.
Ruiz F., Resmini Sartor L., de Souza Junior V.S., Barros dos Santos J.C., Ferreira T.O. Fast pedogenesis of tropical Technosols developed from dolomitic limestone mine spoils (SE-Brazil) // Geoderma. 2020. Vol. 374. PP. 114439.
Ussiri D.A.N., Jacinthe P.-A., Lal R. Methods for determination of coal carbon in reclaimed minesoils: A review // Geoderma. 2014. Vol. 214-215. PP. 155-167.
Dai X., Jia X., Zhang W.P., Bai Y.Y., Zhang J.Y., Wang Y., Wang G. Plant height-crown radius and canopy coverage-density relationships determine above-ground biomass-density relationship in stressful environments // Biology Letters. 2009. № 5. PP. 571-573.
Курачев В. М., Андроханов В. А. Классификация почв техногенных ландшафтов // Сибирский экологический журнал. 2002. № 3. С. 255-261.
IUSS Working Group WRB. World Reference Base for Soil Resources.International soil classification system for naming soils and creating legends for soil maps. 4th ed. Vienna, Austria: International Union of Soil Sciences (IUSS), 2022. 234 p.
Jahn R., Blume H.P., Asio V., Spaargaren O., Schad P. FAO Guidelines for Soil Description. FAO Viale delle Terme di Caracalla: Rome, Italy, 2006. 98 p.
Соколов Д. А., Андроханов В. А., Кулижский С. П., Лойко С. В., Доможакова Е. А. Морфогенетическая диагностика процессов почвообразования на отвалах каменноугольных разрезов Сибири // Почвоведение. 2015. № 1. С. 106-117.
Тюрин И. В. Органическое вещество почв и его роль в почвообразовании и плодородии. Учение о почвенном гумусе. М.: Сельхозгиз, 1937. 287 с.
Абакумов Е. В., Попов А. И. Определение в одной пробе почвы углерода, азота, окисляемости органического вещества и углерода карбонатов // Почвоведение. 2005. № 2. C. 186-194.
Пономарева В.В., Плотникова Т.А. Некоторые данные о степени внутримолекулярной окисленности гумуса разных типов почв (к вопросу о переводном коэффициенте с углерода на гумус) // Почвоведение. 1967. № 7. С. 85-95.
Соколов Д.А. Диверсификация почвообразования на отвалах угольных месторождений Сибири: автореф. дис.. д-ра биол. наук. Новосибирск, 2019. 45 с.
Курачев В.М., Андроханов В.А. Классификация почв техногенных ландшафтов // Сибирский экологический журнал. 2002. № 3. С. 255-261.
Нечаева Т. В., Соколов Д. А., Соколова Н. А. Оценка поглотительной способности углей различной степени метаморфизации на примере фиксации калия // Вестник Томского государственного университета. Биология. 2018. № 44. С. 6-23.
Shrestha Raj K., Lal R. Changes in physical and chemical properties of soil after surface mining and reclamation // Geoderma. 2011. Vol. 161. PP. 168-176.
Querol X., Zhuang X., Font O., Izquierdo M., Alastuey A., Castro I., van Drooge B.L., Moreno T., Grimalt J.O., Elvira J., Cabanas M., Bartroli R., Hower J.C., Ayora C., Plana F., Lopez-Soler A. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data // International Journal of Coal Geology. 2011. Vol. 85 (1). PP. 2-22.
Bragina P.S., Tsibart A.S., Zavadskaya M.P., Sharapova A.V. Soils on overburden dumps in the forest-steppe and mountain taiga zones of the Kuzbass // Eurasian Soil Science. 2014. № 7. РР. 723-733.
Rumpel C. Microbial use of lignite compared to recent plant litter as substrates in reclaimed coal mine soils // Soil Biology and Biochemistry. 2004. № 36 (1) РР. 67-75.
Chabbi A., Rumpel C., Grootes P.M., Gonzalez-Perez J.A., Delaune R.D., Gonzalez-Vila F., Nixdorf B. Lignite degradation and mineralization in lignite-containing mine sediment as revealed by 14C activity measurements and molecular analysis // Organic Geochemistry. 2006. № 37. РР. 957-976.
Соколов Д. А., Морозов С. В., Пчельникова Т. Г., Соколова Н. А. Источники полициклических ароматических углеводородов в компонентах ландшафтов зоны влияния Горловского антрацитового месторождения // Химия в интересах устойчивого развития. 2023. № 31. С. 700-711.
Соколов Д. А., Кулижский С. П., Лойко С. В., Доможакова Е. А. Использование сканирующей электронной микроскопии для диагностики процессов почвообразования на поверхности отвалов каменноугольных разрезов Сибири // Вестник Томского государственного университета. Биология. 2014. № 3 (27). С. 36-52.
Hu P., Zhang W., Chen H., Li D., Zhao Y., Zhao J., Xiao J., Wu F., He X., Luo Y., Wang K. Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils // Science of The Total Environment. 2021. № 767 (1). 145298.
Filcheva E., Noustorova M., Gentcheva-Kostadinova S., Haigh M.J. Organic accumulation and microbial action in surface coal-mine spoils, Pernik, Bulgaria // Ecological Engineering. 2000. № 15 (1-2). РР. 1-15.
Шугалей Л. С. Первичное почвообразование на отвалах вскрышных пород под культурой сосны // Почвоведение. 1997. № 2. С. 247-253.
Cizkova B., Wos B., Pietrzykowski M., Frouz J. Development of soil chemical and micro bial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining // Ecological Engineering. 2018. № 123. РР. 103-111.
Солнцева Н. П., Рубилина Н. Е., Герасимова М. И., Алистратов С. В. Изменение морфологии выщелоченных черноземов в районах добычи угля // Почвоведение. 1992. № 1. С. 17-29.
Maharaj S., Barton C.D., Karatkanasis T.A.D., Rowe H.D., Rimmer S.M. Distinguishing "new" from "old" organic carbon on reclaimed coal mine sites using thermogravimetry: I. Method development // Soil Science. 2007. № 172. РР. 292-301.
Rumpel C., Knicker H., Kogel-Knabner I., Skjemstad J.O., Huttl R.F. Types and chemical composition of organic matter in reforested lignite-rich mine soils // Geoderma. 1998. № 86. РР. 123-142.
Frouz J., Cajthaml T., Kribek B., Schaeffer P., Bartuska M., Galertovа R., Rojik P., Kristufek V. Deep, subsurface microflora after excavation respiration and biomass and its potential role in degradation of fossil organic matter // Folia Microbiologica. 2011. № 56. PP. 389-396.
Куляпина Е. Д., Курачев В. М. Специфика накопления органических компонентов в почвах техногенных ландшафтов // Сибирский экологический журнал. 2004. Т. 11, № 3. С. 345-353.
Morgenroth G., Kretschmer W., Scharf A., Uhl T., Fettweis U., Bens, O., Huttl R.F. 14C Measurement of soil in post-mining landscapes // Nuclear Instruments and Methods in Physics Research. 2004. № 223. PP. 568-572.
Simpson M.J., Hatcher P.G. Determination of black carbon in natural organic matter by chemical oxidation and solid-state 13C Nuclear Magnetic Resonance spectroscopy // Organic Geochemistry. 2004. № 35. РР. 923-935.
Хмелев В.А., Танасиенко А.А. Земельные ресурсы Новосибирской области и пути их рационального использования. Новосибирск: Изд-во СО РАН, 2009. 348 с.
Хмелев В. А., Танасиенко А. А. Почвенные ресурсы Кемеровской области и основы их рационального использования. Новосибирск: Изд-во СО РАН, 2013. 477 с.
Семенов В.М., Когут Б.М. Почвенное органическое вещество. М.: ГЕОС, 2015. 233 с.