Density and biomass of Arctic charr Salvelinus alpinus (L.) complex (Salmoniformes, Salmonidae) from the two oligotrophic lakes at biotopes with different trophic levels | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2024. № 65. DOI: 10.17223/19988591/65/5

Density and biomass of Arctic charr Salvelinus alpinus (L.) complex (Salmoniformes, Salmonidae) from the two oligotrophic lakes at biotopes with different trophic levels

This investigation is aimed to estimate density and biomass of Arctic char Salvelinus alpinus (L.) from four points, different in trophic level and located in two oligotrophic lakes - Lama and Kapchuk, in Krasnoyarsk Territory and Taimyr, respectively. The samples were collected by gillnets from August 5 to September 3, 2019, near the mouths of two spawning rivers: the Nikita-Yuryah river flowing into Lake Kapchuk (69°48'N, 90°98'E) and the Bunisyak river flowing into Lake Lama (69°39'N, 91°59'E). One station was also chosen for each lake ~ 4 km away from the rivers’ mouths: the point (69°48'N, 91°88'E) on Lake Kapchuk and the point (69°41'N, 91°52'E) on Lake Lama. The sampling was conducted by placing single-walled gillnets with a mesh size of 20, 30 and 40 mm on the bottom, with 12 hours of fishing time. In total, there were 239 specimens of charr belonging to five morphotypes. Charr density in the four points was as follows, point 1-0.014 ind/m3, point 2-0.024 ind/m3, point 3-0.011 ind/m3, and point 4-0.027 ind/m3; charr biomass was: point 11.69 g/m3, point 2-4.72 g/m3, point 3-3.55 g/m3, and point 4-5.04 g/m3. In addition, the weight-length relationship was plotted jointly for all morphotypes from the four points. By means of pairwise comparisons of quantitative parameters (density and biomass), statistically significant differences in density and biomass were revealed between populations from the lake points and those from rivers’ mouths. The weight-length relationship is unique for each station that indicates stability of density and biomass values for the period of data collection. The relatively high charr density in the pre-mouth zones of spawning rivers demonstrates attractive effect of allochthonous organic introduced by the river flow. One of the morph, the “Goggle-eyed” charr (considered a deepwater species), is represented in the catches obtained from depths of 12-28 m, where the ratio of females at maturity stages III-IV reaches 30%. A comparative analysis of density and biomass carried out in different habitats allows assuming that there are background density and biomass of charr (and other species of fish) in both lakes, which is significantly lower than those in the high-trophic areas confined to the pre-mouth zones of spawning rivers. This hypothesis is also confirmed by the statistical analysis results which indicate non-random differences in density and biomass values. The fact that all morphotypes inhabit the same biotope may indicate wide feeding spectra of each morph, which makes it possible to effectively consume food resources in oligotrophic lakes. Therefore, it can be assumed that if Baranov’s principle of the dependence of fish abundance on food abundance is true for individual water bodies, it will also be true for zones/biotopes of one water body with different trophic levels. In this regard, the hypothesis that the gradient of density and biomass of charr population is equivalent to the gradient of trophic levels will be valid. The article contains 2 Figures, 2 Tables, 54 References. The author expresses gratitude to Osnov A.G., Lomonosov Moscow State University, for organizing the expedition and to Pavlov D.A. for consulting. The Author declares no conflict of interest.

Download file
Counter downloads: 4

Keywords

Lama, Kapchuk, weight-length relationships, density, biomass, “goggle-eyed” charr, arctic charr

Authors

NameOrganizationE-mail
Lobyrev Feodor S.Lomonosov Moscow State Universitylobyrev@mail.ru
Всего: 1

References

Hudon C., Cattaneo A., Tourville A.M. et al. Oligotrophication from wetland epuration alter the riverine trophic network and carrying capacity for fish // Aquatic Science. 2012. Vol. 74. PP. 495-511.
Chapman E.J., Byron C.J. The flexible application of carrying capacity in ecology // Global Ecology and Conservation. 2018. Vol. 12. PP. 1-12.
Pavlov D.A., Osinov A.G. Differentiation of Arctic charr Salvelinus alpinus Complex (Salmonidae) in lakes Lama and Kapchuk (Taimyr) based on genetic analysis, external morphology, and otolith shape // Journal of Ichthyology. 2023. Vol. 63. PP. 22-40.
Савваитова К.А., Максимов В.А., Нестеров В.Д. К систематике и экологии гольцов рода Salvelinus (сем. Salmonidae) водоемов п-ова Таймыр // Вопросы ихтиологии. 1980. Т. 20, № 2. С. 203-219.
Klemetsen A., Amundsen P.A., Dempson J.B., Jonsson B., Jonsson N., O'Connell M.F., Mortensen E. Atlantic salmon Salmo salar (L.), brown trout Salmo trutta (L.) and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories // Ecology of Freshwater Fish. 2003. Vol. 12(1). PP. 1-59.
Hrabik T.R., Jensen O.P., Martell S.J., Walters C.J., Kitchell J.F. Diel vertical migration in the Lake Superior pelagic community. I. Changes in vertical migration of coregonids in response to varying predation risk // Canadian Journal of Fisheries and Aquatic Sciences. 2006. Vol. 63. PP. 2286-2295. org/.
Чемагин А.А. Влияние абиотических факторов на особенности и динамику распределения рыб в малом притоке реки Иртыш // Вестник Астраханского государственного технического университета. Серия: Рыбное хозяйство. 2020. № 4. С. 66-80.
Френкель С.Э., Смирнов Б.П., Пресняков А.В. Характеристика зоопланктона прибрежья острова Итуруп в период откочевки молоди лососевых в открытое море // Известия ТИНРО. 2013. Т. 172. С. 189-195.
Bond M.H., Beckman B.R., Rohrbach L., Quinn T.P. Differential growth in estuarine and freshwater habitats indicated by plasma IGF1 concentrations and otolith chemistry in Dolly Varden Salvelinus malma // Journal of Fish Biology. 2014. Vol. 85 (5). PP. 1429-1445. 10.1111/jfb. 12493.
Thorpe J.E. Salmonid fishes and the estuarine environment // Estuaries. 1994. Vol. 17 (1). PP. 76-93.
Bottom D.L., Jones K.K., Cornwell T.J., Gray A. Patterns of Chinook salmon migration and residency in the Salmon River estuary (Oregon) // Estuarine, Coastal and Shelf Science. 2005. Vol. 64 (1). PP. 79-93.
Lau D.C., Sundh I., Vrede T., Pickova J., Goedkoop W. Autochthonous resources are the main driver of consumer production in dystrophic boreal lakes // Ecology. 2014. Vol. 95. PP. 1506-1519.
Fuentes N., Gude H., Wessels M.S., Straile D. Allochthonous contribution to seasonal and spatial variability of organic matter sedimentation in a deep oligotrophic lake (Lake Constance) // Limnologica: Ecology and Management of Inland Waters. 2013. Vol. 43 (2). PP. 122-130.
Баранов Ф.И. Избранные труды: Теория рыболовства. М.: Пищевая промышленность, 1971. Т. 3. 303 с.
Касумян А.О., Павлов Д.С. Стайное поведение рыб. М.: Товарищество научных изданий КМК, 2018. 274 с.
Froese R., Tsikliras A.C., Stergiou K.I. Editorial Note on Weight-Length Relations of Fishes // Acta Ichthyologica Et Piscatoria. 2011. Vol. 41 (4). PP 261-263.
Froese R. Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations // Journal of Applied Ichthyology. 2006. Vol. 22(4). PP. 241-253. 10.1111/j. 1439-0426.2006.00805.x.
Petrakis G., Stergiou K.I. Weight-length relationships for 33 fish species in Greek waters // Fisheries Research. 1995. Vol. 21(3-4). PP. 465-469.
Lobyrev F., Hoffman M.J. A morphological and geometric method for estimating the selectivity of gill nets // Reviews in fish biology and fisheries. 2018. Vol. 28. PP. 909-924.
Лобырев Ф.С., Пивоваров Е.А., Хохряков В.Р., Павлов С.Д. Популяционные характеристики плотвы, густеры и окуня в оз. Озерявки (национальный парк "Себежский") // Труды ВНИРО. 2023. Т. 191. С. 37-52.
Lobyrev F., Hoffman M.J. A method for estimating fish density through the catches of gill nets // Fisheries Management and Ecology. 2023. Vol. 30. PP. 24-36.
Глязнецова Ю.С., Немировская И.А. Аварийный разлив дизельного топлива в Норильске // Природа. 2022. № 3(1279). С. 27-38.
Безматерных Д.М., Пузанов А.В., Котовщиков А.В. и др. Гидрохимические показатели качества воды Норило-Пясинской озерно-речной системы после разлива дизельного топлива на ТЭЦ-3 г. Норильска в 2020 г // Сибирский экологический журнал. 2021. Т. 28, № 4. С. 408-422.
Pavlov D.A., Osinov A.G. Differentiation of Arctic Charr Salvelinus alpinus Complex (Salmonidae) in Lakes Lama and Kapchuk (Taimyr) Based on Genetic Analysis, External Morphology, and Otolith Shape // Journal of Ichthyology. 2023. Vol. 63 (1). PP. 22-40.
Osinov A.G., Volkov A.A., Pavlov D.A. Secondary contact, hybridization, and diversification in Arctic charr (Salvelinus alpinus (L.) species complex) from lakes of the Norilo-Pyasinskaya water system, Taimyr: how many forms exist there? // Hydrobiologia. 2022. Vol. 849. PP. 2521-2547.
Пичугин М.Ю., Чеботарева Ю. В. Особенности личиночного периода развития холодноводной озёрно-речной формы гольца Дрягина (род Salvelinus) из озера Лама (п-ов Таймыр) // Вопросы ихтиологии. 2011. Т. 51, № 2. С. 260-274.
Заделёнов В.А., Дубовская О.П., Бажина Л.В., Глущенко Л.А., Исаева И.Г., Клеушa В.О., Семенченко К.А., Матасов В.В., Шадрин Е.Н. Новые сведения о биоте некоторых озер западной части плато Путорана // Вестник Сибирского федерального университета. Биология. 2017. Т. 10. С. 87-105.
Попов П.А. Ихтиоценозы больших олиготрофных озер субарктической зоны Средней Сибири // Известия Алтайского отделения Русского географического общества. 2018. № 2 (49). С. 84-94.
Hershey A.E., Getter G.M., McDonald M.E., Miller M.C. A Geomorphic-Trophic Model for Landscape Control of Arctic Lane FoodWebs // BioScience 1999. Vol. 49 (11). PP. 887-897.
Rowe D.K. Vertical segregation and seasonal changes in fish depth distributions between lakes of contrasting trophic status // Journal of Fish Biology. 1994. Vol. 45(5). PP. 787800. 10.1111/j. 1095-8649.1994.tb00944.x.
Mann K. Physical oceanography, food chains, and fish stocks: a review // ICES Journal of Marine Science. 1993. Vol. 50(2). PP. 105-119.
Nigel D.W., Jurek K. Stochastic determinants of assemblage patterns in coral reef fishes: a quantification by means of two models // Environmental Biology of Fishes. 1996. Vol. 47(3). PP. 255-267.
Kappeler F., Wolfgang C., Danielle A., Dalponte G., Mormul R.P. The role of deterministic factors and stochasticity on the trophic interactions between birds and fish in temporary floodplain ponds // Hydrobiologia. 2016. Vol. 773 (1). PP. 225-240.
Charles A.T. Nonlinear costs and optimal fleet capacity in deterministic and stochastic fisheries // Mathematical biosciences. 1985. Vol. 173(2). PP. 271-299.
Specziar A., Gyorgy A.I., Eros T. Within-lake distribution patterns of fish assemblages: the relative rules of spatial, temporal and random environmental factors in assessing fish assemblages using gillnets in a large and shallow temperate lake // Journal of Fish Biology. 2013. Vol. 82(3). PP. 840-855.
Меншуткин В.В. Логико-лингвистические модели популяций рыб и озерных экологических систем // Труды Карельского научного центра РАН. 2011. № 4. С. 88-97.
Poff N.L., Allan J.D. Functional organization of stream fish assemblages in relation to hydrologic variability // Ecology. 1995. Vol. 76. PP. 606-627.
Mochek A.D., Pavlov D.S.Comparative Analysis of Fish Distribution in Lentic and Lotic Ecosystems (Review) // Inland water biology. 2021. Vol. 14. PP. 196-204.
Strange E.M., Moyle P.B., Foin T.C.Interactions between stochastic and deterministic processes in stream fish community assembly // Environmental Biology of Fishes. 1992. Vol. 36. PP. 1-15.
Kennard M.J., Often J.D., Arthington A.H. et al. Multiscale effects of flow regime and habitat and their interaction on fish assemblage structure in eastern Australia // Canadian Journal of Fisheries and Aquatic Sciences. 2007. Vol. 64. PP. 1346-1359.
Поддубный С.А., Г ерасимов Ю.В., Новиков Д.А. Структура течений и распределение рыб в речных плесах верхневолжских водохранилищ // Биол. внутрен. вод. 2003. № 1. С. 89-97.
Мартинсен Ю.В. Влияние течений на поведение рыб // Рыбное хозяйство. 1940. № 12. С. 23-27.
Maunder M., Punt A.E. A review of integrated analysis in fisheries stock assessment // Fisheries Research. 2013. Vol. 142. PP. 61-74.
Мочек А.Д., Борисенко Э.С., Будаев С.В., Павлов Д.С. Летнее и осеннее распределение рыб в озере Глубокое // Вопр. ихтиол. 2015. Т. 55, № 3. С. 279-287.
Павлов Д.С., Мочек А.Д., Борисенко Э.С., Дегтев Е.А. Распределение рыб в пойменном озере (бассейн р. Иртыш) // Рыбное хозяйство. 2010. № 3. С. 68-70.
Pusey B.J., Kennard M.J., Arthington A.H. Discharge variability and the development of predictive models relating stream fish assemblage structure to habitat in north-eastern Australia // Ecology of Freshwater Fish. 2000. Vol. 9. PP. 30-50. 10.1034/j. 1600-0633.2000.90105.x.
Герасимов Ю.В., Борисенко Э.С., Базаров М.И., Столбунов И.А., Цветков А.И. Распределение рыб в среднем течении большой равнинной реки под влиянием гидрофизических факторов // Биол. внутрен. вод. 2019. № 1. С. 42-50.
Gullestad P., Sundby S., Kjesbu O. Management of transboundary and straddling fish stocks in the Northeast Atlantic in view of climate-induced shifts in spatial distribution // Fish and Fisheries. 2020. Vol. 21. PP. 1008-1026.
Котегов Б.Г. Особенности видового состава и структуры сообществ рыб малых рек Удмуртской Республики // Экология. 2007. № 4. С. 274-282.
Utne K.R., Huse G., Ottersen G., Holst J. и др. Horizontal distribution and overlap of plank-tivorous fish stocks in the Norwegian Sea during summers 1995-2006 // Marine Biology Research. 2012. Vol. 8. PP. 420-441.
Бобырев А.Е., Бурменский В.А., Криксунов Е.А., Шатуновский М.И. Биотическое сообщество Северного Каспия: проблемы управления биологическими ресурсами // Усп. современ. биол. 2009. Т. 129, № 6. С. 598-609.
Криксунов Е.А., Чистов С.В., Васильев П.В. и др. Пространственно-временная динамика рыб Псковского озера // Журн. общ. биол. 2020. Т. 81, № 1. С. 3-19.
Васильев П.В., Чистов С.В., Криксунов Е.А., Бобырев А.Е. Картографическое моделирование пространственно-временной динамики популяций рыб Псковского озера // Интеркарто. Интергис. 2018. Т. 24, № 2. С. 292-305.
Павлов Д.С., Мочек А.Д. Распределение рыб в речных системах как динамичное явление // Успехи современной биологии. 2009. Т. 129, № 6. С. 528-537.
 Density and biomass of Arctic charr <i>Salvelinus alpinus</i> (L.) complex (Salmoniformes, Salmonidae) from the two oligotrophic lakes at biotopes with different trophic levels | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2024. №  65. DOI: 10.17223/19988591/65/5

Density and biomass of Arctic charr Salvelinus alpinus (L.) complex (Salmoniformes, Salmonidae) from the two oligotrophic lakes at biotopes with different trophic levels | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2024. № 65. DOI: 10.17223/19988591/65/5

Download full-text version
Counter downloads: 427