Postagrogenic Dynamics of pH, Electrical Conductivity and Redox Potential in Soils of Diverse Texture at the Smolensk Poozerie National Park (Russia) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. № 64. DOI: 10.17223/19988591/64/1

Postagrogenic Dynamics of pH, Electrical Conductivity and Redox Potential in Soils of Diverse Texture at the Smolensk Poozerie National Park (Russia)

Postagrogenic soil restoration is typical for many areas of European Russia. Therefore, it is necessary to understand the transformation of chemical properties that affect soil quality. Oxidation-reduction potential (Eh), electrical conductivity (EC), and pH value of humus and mineral horizons were studied in the Smolenskoye Poozerye National Park ('55°32'N. 31°24'E) soils under the vegetation of different stages of postagrogenic succession: agrocenosis, meadow, and forest with diverse age of the tree stand: <30 years, 30-50 years, 50-65 years, and > 66 years old. The variability of the chemical properties of soils under vegetation within one stage of succession was also investigated. According to the tree stand age of forests and field soils descriptions, the stage of postagrogenic succession was determined for 76 soil sampling sites (See Table 1). Within one day after sampling in an aqueous suspension, the pH value was determined using an Expert-pH pH meter (Saint Petersburg, Russia). EC and Eh were measures using a COM80 EC/TDS meter HM DIGITAL (USA, South Korea). Data processing and calculation of descriptive statistics was carried out in the MC Excel (2013) and Statistica 8 programs: Spearman correlation analysis, coefficient of variation, nonparametric Wilcoxon test (See Table 2, Table 3). The pH value of the humus horizon of sandy soils under meadows is higher than that of soils under forests (See Figure 1). In sandy soils, due to lower buffer capacity, pH value changed at a greater depth and changes were more noticeable than in loamy soils. In parent materials, i.e. sands, pH value was restored to the natural level at later stages of succession. The redox potential of organic soil horizons depended on the pH value and vegetation. Eh was lower in meadows than in forest soils. In humus horizons, it changed more contrast in loamy soils than in sandy soils. In mineral horizons of sandy soils, Eh depended on the pH value (see Table 1). The electrical conductivity of post-agrogenic soils of the Smolenskoye Poozerye National Park depended on soil texture. In sandy soils, the application of fertilizers increased EC. Mixing and plowing of loamy soils resulted in decrease of EC. In the studied groups of soils under diverse vegetation, the variability was maximum for EC (the coefficient of variation was 14-136%, see Table 2), which confirmed the dependence of this property not only on vegetation and anthropogenic impact, but also parent materials and topography. The variability of pH and Eh was lower (the coefficient of variation was 1-18% and 1-22%, respectively). For studying temporal variability of soil EC, a larger number of replicates with a comprehensive determination of the physicochemical properties is recommended due to the high spatial variability. The article contains 2 Figures, 4 Tables and 65 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 3

Keywords

ecological indicators, agriculture, chronosequence, physical and chemical properties of soils, soil fertility, space-for-time substitution

Authors

NameOrganizationE-mail
Enchilik Polina R.Lomonosov Moscow State University; Center for Problems of Ecology and Productivity of Forests, Russian Academy of Sciencespolimail@inbox.ru
Klink Galina V.Institute for Information Transmission Problems named after A.A. Kharkevich RASgalkaklink@gmail.com
Peunova Alisa A.Lomonosov Moscow State Universitypeunovaalisa@yandex.ru
Prilipova Elena S.Lomonosov Moscow State Universitystarchikova.e.s@gmail.com
Sergeeva Elizaveta A.Lomonosov Moscow State Universitylisa.sergeeva2204@mail.ru
Sobolev Nikolay S.Lomonosov Moscow State Universitykolyhome200O@yandex.ru
Semenkov Ivan N.Lomonosov Moscow State University; Center for Problems of Ecology and Productivity of Forests, Russian Academy of Sciencessemenkov@geogr.msu.ru
Всего: 7

References

Ershov D.V., Gavrilyuk E.A., Koroleva N.V., Belova E.I., Tikhonova E.V., Shopina O.V., Titovets A.V. et al. Natural Afforestation on Abandoned Agricultural Lands during PostSoviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus // Remote Sensing. 2022. Vol. 14 (2). Art. 322.
Люри Д.И., Горячкин С.В., Караваева Н.А., Денисенко Е.А., Нефедова Т.Г. Динамика сельскохозяйственных земель России в ХХ веке и постагрогенное восстановление растительности и почв. М.: Геос, 2010. 416 с.
Hooker T.D., Compton J.E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment // Ecological Applications. 2003. Vol. 13 (2). P. 99-313.
Lyuri D.I., Karelin D.V., Kudikov A.V., Goryachkin S.V. Changes in soil respiration in the course of the postagrogenic succession on sandy soils in the southern taiga zone // Eurasian Soil Science. 2013. № 46. P. 935-947.
Vladychensky A.S., Telesnina V.M., Ivanko M.V. Changes in the humus state of forest soils of the European territory and Siberia during the withdrawal from agricultural use // Moscow University Soil Science Bulletin. 2006. Vol. 61, № 3. P. 3-10.
Курганова И.Н., Лопес де Гереню В.О., Мостовая А.С., Овсепян Л.А., Телеснина В.М., Личко В.И., Баева Ю.И. Влияние процессов естественного лесовосстановления на микробиологическую активность постагрогенных почв европейской части России // Лесоведение. 2018. № 1. С. 3-23.
Shopina O.V., Geraskina A.P., Kuznetsova A.I., Tikhonova E.V., Titovets A.V., Bavshin I.M., Khokhryakov V.R. et al. Stages of restoration of components of post-agrogenic pine forest ecosystems at the National Park "Smolensk Lakeland" // Eurasian Soil Science. 2023. Vol. 56, № 1. P. 16-28.
Pigozzo A.T.J., Lenzi E., De Luca J., Scapim C.A., Da Costa A.C.S. Transition metal rates in latosol twice treated with sewage sludge // Brazilian Archives of Biology and Technology. 2006. Vol. 49 (3). P. 515-526.
Rousk J., Brookes P.C., Baath E. Investigating the mechanisms for the opposing pH-rela-tionships of fungal and bacterial growth in soil // Soil Biology and Biochemistry. 2010. Vol. 42. Р. 926-934.
Souza L.F.T., Billings S.A. Temperature and pH mediate stoichiometric constraints of organically derived soil nutrients // Global Change Biology. 2022. Vol. 28. P. 1630-1642.
Malik A.A., Puissant J., Buckeridge K.M., Goodall T., Jehmlich N., Chowdhury S., Gweon H.S., Peyton J.M., Mason K.E., Agtmaal M., Blaud A., Clark I.M., Whitaker J., Pywell R.F., Ostle N., Gleixner G., Griffiths R.I. Land use driven change in soil pH affects microbial carbon cycling processes // Nature Communications. 2018. Vol. 9. Art. 3591.
Etesami H., Beattie G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops // Frontiers in Microbiology. 2018. Vol. 9. Art. 148.
Husson O., Audebert A., Benada J., Soglonou B., Tano F., Dieng I., Bousset L. et al. Leaf EH and pH: A novel indicator of plant stress. Spatial, Temporal and Genotypic Variability in Rice (Oryza sativa L.) // Agronomy. 2018. Vol. 8 (10). Art. 209.
Paillet Y., Cassagne N., Brun J.J. Monitoring forest soil properties with electrical resistivity // Biology and Fertility of Soils. 2010. Vol. 46. P. 451-460.
Samouelian A., Cousin I., Tabbagh A., Bruand A., Richard G., Samoue A. Electrical resistivity survey in soil science: A review // Soil and Tillage Research. 2005. Vol. 83. P. 173-193.
Szafranek-Nakonieczna A., Stcpniewska Z. The influence of the aeration status (ODR, Eh) of peat soils on their ability to produce methane // Wetlands Ecology and Management. 2015. Vol. 23. P. 665-676.
Snakin V.V., Prisyazhnaya A.A., Kovacs-Lang E. Soil Liquid Phase Composition. 1st ed. Amsterdam: Elsvier, 2001.
Husson O., Husson B., Brunet A., Babre D., Alary K., Sarthou J.P., Charpentier H., Durand M., Benada J., Henry M. Practical improvements in soil redox potential (Eh) measurement for characterisation of soil properties. Application for comparison of conventional and conservation agriculture cropping systems // Analytica Chimica Acta. 2016. Vol. 906. P. 98-109.
Husson O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy // Plant and Soil. 2013. Vol. 362. P. 389-417.
Kalinina O., Goryachkin S.V., Karavaeva N.A., Lyuri D.I., Giani L. Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia // Carbon Balance and Management. 2010. Vol. 5. 1.
Kalinina O., Giani L., Goryachkin S.V., Lyuri D.I. Postagrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia // Catena. 2015. Vol. 129. P. 18-29.
Baeva Y.I., Kurganova I.N., Gerenyu V., Ovsepyan L., Telesnina V.M., Tsvetkova Yu.D. Change in aggregate structure of various soil types during the succession of abandoned lands // Dokuchaev Soil Bulletin. 2017. Vol. 88, № 88. P. 47-74. doi: v10.7868/s0032180x17030029.
Telesnina V.M., Vaganov I.E., Karlsen A.A., Ivanova A.E., Zhukov M.A., Lebedev S.M. Specific features of the morphology and chemical properties of coarse-textured postagro-genic soils of the southern taiga, Kostroma oblast // Eurasian Soil Science. 2016.
Litvinovich A.V. Postagrogenic evolution of well cultivated soddy-podzolic soils in the northwestern of the nonchernozemic zone // Agrochemistry. 2009. P. 85-93.
Kazakova A.I., Semikolennykh A.A., Gornov A.V., Gornova M.V., Lukina N. V. Influence of Vegetation on the Lability Characteristics of Sandur Areas of the Bryansky Les Nature Reserve // Moscow University Soil Science Bulletin. 2018.
Koptsik G.N., Kupriianova Y.V., Kadulin M.S. Spatial Variability of Carbon Dioxide Emission by Soils in the Main Types of Forest Ecosystems at the Zvenigorod Biological Station of Moscow State University // Moscow University Soil Science Bulletin. 2018.
Dymov A.A. Soil successions in the boreal forests of the Komi Republic. GEOS. Moscow, 2020. 318 p.
Ryzhova I.M., Telesnina V.M., Sitnikova A.A. Dynamics of Soil Properties and Carbon Stocks Structure in Postagrogenic Ecosystems of Southern Taiga during Natural Reforestation // Eurasian Soil Science. 2020.
Kurochkin I.N., Chugai N.V. The change dynamics of acidity and humus content in agricultural and former agricultural soils of Vladimir Oblast // International Research Journal. 2020. Vol. 12, № 102. P. 69-72.
Koptsik G.N., Berezina N.A. Vegetation and soils of the Smolenskoye Poozerye National Park. M.: NIA-Prirod, 2009. 316 p.
Королева Н.В., Тихонова Е.В., Ершов Д.В., Салтыков А.Н., Гаврилюк Е.А., Пугачевский А.В. Оценка масштабов зарастания нелесных земель в национальном парке "Смоленское Поозерье" за 25 лет по спутниковым данным Landsat // Лесоведение. 2018. № 2. С. 83-96.
Urusevskaya I.S., Alyabina I.O., Shoba S.A. The map of soil-geographic zonation of the Russian Federation 1:8 000 000. 2020.
Хохлов С.Ф. Постагрогенные дерново-подзолистые почвы под лесом и лугом в Подмосковье: свойства, эволюция и элементы водного баланса: дис.. канд. с.-х. наук. М.: Почвенный институт им. В.В. Докучаева, 2015. 158 с.
Кречетов П.П., Дианова Т.М. Химия почв. Аналитические методы исследования. М.: Географический факультет МГУ, 2009. 148 с.
FAO. Standard operating procedure for soil pH determination // Global Soil Partnership, 2021.
Wilcox J.C. Determination of electrical conductivity of soil solution // Soil Science. 1947.
Semenkov I.N., Klink G.V., Lebedeva M.P., Krupskaya V.V., Chernov M.S., Dorzhieva O.V., Kazinskiy M.T. et al. The variability of soils and vegetation of hydrothermal fields in the Valley of Geysers at Kamchatka Peninsula // Scientific Reports. 2021.
Lehman A., Rourke N.O. JMP for Basic Univariate and Multivariate Statistics A Step-by-Step Guide // Analysis. 2005.
Wilcoxon F. Individual Comparisons by Ranking Methods // Biometrics Bulletin. 1945.
Moreira A., Fageria N.K. Liming influence on soil chemical properties, nutritional status and yield of alfalfa grown in acid soil // Revista Brasileira de Ciencia do Solo. 2010.
Vigovskis J., Jermuss A., Svarta A., Sarkanbarde D. The changes of soil acidity in longterm fertilizer experiments // Zemdirbyste-Agriculture. 2016.
Junior E.C., Goncalves Jr A.C., Seidel E.P., Ziemer G.L., Zimmermann J., Oliveira V.H.D. de, Schwantes D. et al. Effects of Liming on Soil Physical Attributes: A Review // The Journal of Agricultural Science. 2020.
Perelman A.I., Kasimov N.S. Landscape geochemistry. Astrea-200. M., 1999. 768 p.
Bobrovskii M.V. Effect of the Historical Land use on the Structure of Forest Soils in European Russia // Eurasian Soil Science. 2010.
Bakina L.G. The nature of soil acidity of soddy-podzolic soils on differemt particle size distribution and its change during the liming // Agrochemistry. 2015. Vol. 3. P. 3-13.
Шильников И.А., Лебедева Л.А. Известкование почв. М.: Агропромиздат, 1987. 169 с.
Телеснина В.М., Курганова И.Н., Лопес де Г.В.О., Овсепян Л.А., Личко В.И., Ермолаев А.М., Мирин Д.М. Динамика свойств почв и состава растительности в ходе постагрогенного развития в разных биоклиматических зонах // Почвоведение. 2017.
Samsonova V.P., Meshalkina J.L. Assessing the role of the relief in the spatial variability of agriculturally important soil properties for intensively cultivated agricultural land // Moscow University Soil Science Bulletin. 2014.
Fu W., Zhao K., Jiang P., Ye Z., Tunney H., Zhang C. Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements // Soil Science. 2013.
Bogunovic I., Mesic M., Zgorelec Z., Jurisic A., Bilandzija D. Spatial variation of soil nutrients on sandy-loam soil // Soil and Tillage Research. 2014.
Reza S.K., Nayak D.C., Mukhopadhyay S., Chattopadhyay T., Singh S.K. Characterizing spatial variability of soil properties in alluvial soils of India using geostatistics and geographical information system // Archives of Agronomy and Soil Science. 2006. Vol. 63, № 11. P. 1489-1498.
Енчилик П.Р., Семенков И.Н. Пространственная изменчивость элементного состава почв в катене Центрально-Лесного заповедника // Лесоведение. 2022. № 4. С. 411418.
Simek M., Cooper J.E. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years // European Journal of Soil Science. 2002.
Gavryshko O., Olifir J., Partyka T. Agrogenic changes in the redox potential in the profile of light-grey forest surface gleyed soils of the Western Forest-Steppe // Bulletin of Agricultural Science. 2020.
Savich V., Lareshin V., Dubinok N., Gabbasova I., Mousa K. Ameliorative and agronomic assessment of the redox state of soils. M.: RUDN Univ., 2006. 484 p.
Chesworth W. Redox, soils, and carbon sequestration // Edafologia. 2004.
Tano B.F., Brou C.Y., Dossou-Yovo E.R., Saito K., Futakuchi K., Wopereis M.C.S., Hus-son O. Spatial and temporal variability of soil redox potential, pH and electrical conductivity across a toposequence in the savanna of west Africa // Agronomy. 2020. Vol. 10, № 11.
Yang J., Hu Y., Bu R. Microscale spatial variability of redox potential in surface soil // Soil Science. 2006.
Machado P.L.O. de A., Bernardi A.C. de C., Valencia L.I.O., Molin J.P., Gimenez L.M., Silva C.A., Andrade A.G. de et al. Mapeamento da condutividade eletrica e relacao com a argila de Latossolo sob plantio direto // Pesquisa Agropecuaria Brasileira. 2006.
Molin J.P., De Castro C.N. Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique // Open Access Scientia Agricola. 2008.
Moral F.J., Terron J.M., Silva J.R.M. da. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques // Soil and Tillage Research. 2010.
Aimrun W., Amin M.S.M., Nouri H. Paddy field zone characterization using apparent electrical conductivity for rice precision farming // International Journal of Agricultural Research. 2011.
Sudduth K.A., Drummond S.T., Kitchen N.R. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture // Computers and Electronics in Agriculture. 2001.
Besson A., Cousin I., Bourennane H., Nicoullaud B., Pasquier C., Richard G., Dorigny A. et al. The spatial and temporal organization of soil water at the field scale as described by electrical resistivity measurements // European Journal of Soil Science. 2010. doi: 0.1111/j.1365-2389.2009.01211.x.
IUSS Working Group WRB. World Reference Base for Soil Resources.International soil classification system for naming soils and creating legends for soil maps. Vienna: International Union of Soil Sciences (IUSS). 2022. 234 p.
 Postagrogenic Dynamics of pH, Electrical Conductivity and Redox Potential in Soils of Diverse Texture at the Smolensk Poozerie National Park (Russia) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. №  64. DOI: 10.17223/19988591/64/1

Postagrogenic Dynamics of pH, Electrical Conductivity and Redox Potential in Soils of Diverse Texture at the Smolensk Poozerie National Park (Russia) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. № 64. DOI: 10.17223/19988591/64/1

Download full-text version
Counter downloads: 250