Activity of superoxide dismutase and catalase in lichens with different composition of photobionts
Data on the activity of catalase and superoxide dismutase in the thalli of the cyanolichen Peltigera praetextata and the green algal lichen Hypogymnia physodes (See Fig. 1) at different ontogenetic conditions are not available in the literature. At the same time, the study of antioxidant system of lichen thalli with different photobionts during ontogenesis is relevant and can contribute to understanding the mechanisms of adaptation of symbionts to changing environmental conditions, and also serve as indicators of the functional state of the organism. The aim of the study was to investigate the activity of catalase and superoxide dismutase enzymes in lichen thalli P. praetextata and H. physodes at different stages of ontogenesis. P. praetextata and H. physodes thalli samples were collected from aspen and pine trunks under similar ecological conditions of mixed aspen-spruce communities in the middle taiga (62°15'15.9'' N, 33°58746.1" E, 61°50'17'' N, 34°23'13'' E, the Republic of Karelia) and northern taiga (64°34'13.9' N, 43°15'48'' E, Arkhangelsk Oblast, 64° 33'19'' N, 30°20'46'' E, the Republic of Karelia). Based on morphological features, thalli samples were divided into groups of different age. P. praetextata thalli were divided into 3 groups: virginal (pregenerative, young thalli without reproduction structures), generative (thalli with apothecia and phyllidia - structures of vegetative reproduction), and senile thalli (thalli with signs of degradation over a larger area). H. physodes thalli were divided into 2 groups: virginil and senile thalli; generative thalli with apothecia are extremely rare in the study areas. Catalase activity measured based on enzymatic degradation of hydrogen peroxide, superoxide dismutase activity was determined spectrophotometrically by inhibition of photoreduction of nitroblue tetrazolium, protein content was determined by the method Bradford. Statistical analysis of the data was carried out using one-way analysis of variance. The protein content (mg/g dry mass) in P. praetextata thalli within the studied sample averaged 1.12 ± 0.09, in H. physodes thalli - 2.45 ± 0.32. The activity of superoxide dismutase (units/mg of protein) in thalli of P. praetextata reached an average of 0.34 ± 0.12, in thalli of H. physodes - 0.09 ± 0.01. The values of catalase activity (μmol H2O2μg protein) in P. praetextata thalli averaged 2.06 ± 0.48, H. physodes - 0.49 ± 0.07. For the thalli of the cyanolichen P. praetextata, a lower (2 times) protein content (See Fig. 2) and a higher (4-5 times) activity of superoxide dismutase (See Fig. 3) and catalase (See Fig. 4) were found in compared with the chlorobiont lichen H. physodes. The species P. praetextata belongs to the group of cyanolichens, and its photobiont is cyanobacteria of the genus Nostoc located in the algal layer of the thallus. In both lichen species, the maximum values of catalase activity were established for virginal thalli, and the minimum values for senile thalli. Perhaps this is due to the high intensity of "growth respiration" of young lichen thalli, which leads to the formation of reactive oxygen species. Differences in the activity of superoxide dismutase in thalli of different ontogenetic stages in the studied species were not shown. In the thalli of P. praetextata and H. physodes, the activity of catalase in thalli from the northern taiga communities is higher than in the thalli of the middle taiga, while the activity of superoxide dismutase, on the contrary, was on average higher in the lichen thalli of the middle taiga. This might be due to variability in the intensity of photosynthesis and respiration along the latitudinal gradient. In lichens, catalase activity can be a marker of mycobiont respiration, and superoxide dismutase activity is a marker of photobiont photosynthesis. The question of contribution of the fungal or algal components of the lichen thallus to the activity of antioxidant enzymes remains open. The article contains 4 Figures, 51 References. The authors are grateful to K.M. Nikerova, Senior Researcher, Analytical Laboratory, KarRC RAS (Petrozavodsk) for valuable consultations on the specifics of the methods used in the study, as well as to the master of the Institute of Biology, Ecology and Agrotechnologies of PetrSU M.A. Chigir for help in sample preparation. The Authors declare no conflict of interest.
Keywords
Hypogymnia physodes,
Peltigera praetextata,
cyanolichen,
chlorobiont lichen,
superoxide dismutase,
catalaseAuthors
Androsova Vera I. | Petrozavodsk State University | vera.androsova28@gmail.com |
Terebova Elena N. | Petrozavodsk State University | eterebova@gmail.com |
Bykova Anastasia D. | Petrozavodsk State University | starostabiologov31@gmail.com |
Всего: 3
References
Колупаев Ю.Е., Карпец Ю.В. Активные формы кислорода при адаптации растений к стрессовым температурам // Физиология и биохимия культурных растений. 2009. Т. 41, № 2. С. 95-108.
Beckett R., Minibayeva F. Rapid breakdown of exogenous extracellular hydrogen peroxide by lichens // Physiologia Plantarum. 2007. № 129. PP. 588-596. 10.1111/j. 1399-3054.2006.00846.x.
Гармаш Е.В., Маслова С.П., Далькэ И.В., Плюснина С.Н. Сравнительное исследование роста, фотосинтеза и дыхания некоторых бореальных видов в условиях средней и крайне-северной тайги // Теоретическая и прикладная экология. 2014. № 2. С. 91100.
Семихатова О.А., Иванова Т. И., Кирпичникова О.В. Сравнительное исследование темнового дыхания растений Арктики и умеренной зоны // Физиология растений. 2007. Т. 54, № 5. С. 659-665.
Семихатова О.А., Чиркова Т.В. Физиология дыхания растений. СПб.: Изд-во СПб. ун-та, 2001. 220 с.
Munkers K.D. Free Rad // Biol. Chem. 1992. № 13. РР. 305-318.
Natvig D.O., Sylvester K., Dvorachek W.N., Baldwin J.L. // The Mycota / eds by R. Brambl, G. Marzluf. Berlin: Springer-Verlag, 1996. РР. 191-209.
Weissman L., Garty J., Hochman A. Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration // Appl Environ Microbiol. 2005. Vol. 71, № 11. PP. 6508-6514. doi: 10.1128%2FAEM.71.11.6508-6514.2005.
Beckett R.P., Minibayeva F. Wounding induces a burst of extracellular superoxide production in Peltigera canina // Lichenologist. 2003. Vol. 35, № 1. РР. 87-89.
Banchi E., Candotto Camiel F., Montagner A., Petruzzellis F., Pichler G., Giarola V., Bartles D., Pallavicini A., Tretiach M. Relation between water status and desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa // Plant Physiology and Biochemistry. 2018. № 129. РР. 189-197.
Honegger R. Water relations in lichens // Fungi in the Environment / eds by G.M. Gadd, S. C. Watkinson, P. Dyer. Cambridge University Press, 2006. PP. 185-200.
Chirva O.V., Nikerova K.M., Ignatenko R.V., Androsova V.I., Tarasova V.N. Superoxide dismutase and catalase activity as an indicator of the ontogenetic state of the threatened Lichen Lobaria pulmonaria (L.) Hoffm. in the middle boreal subzone // Russian Journal of Plant Physiology. 2023. Vol. 70, № 76. doi: 10.1134%2Fs1021443722602798.
Chirva O.V., Nikerova K.M., Androsova V.I., Ignatenko R.V. Activity of catalase and superoxidedismutase in lichen Lobaria pulmonaria in forest communities of middle and northernmost boreal zone (Karelia, Russia) // Czech Polar Reports. 2019. Vol. 9, № 2. PP. 228-242.
Гигиняк Ю.Г., Мямин В.Е., Бородин О.И., Белый П.Н., Канделинская О.Л., Грищенко E.P., Pипинская К.Ю., Давыдов Е.А. Эколого-биохимические особенности отдельных представителей лихенобиоты Антарктиды // Весщ НАН Беларуси 2016. № 2. С. 47-53.
Ивантер Э.В., Коросов А.В. Введение в количественную биологию: учеб. пособие. Петрозаводск: Изд-во ПетрГУ, 2011. 302 с.
Bradford M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding // Anal. Biochem. 1976. № 72. PP. 248-254.
Giannopolitis C.N., Ries S.K. Superoxide dismutases: I. Occurrence in higher plants // Plant Physiol. 1977. Vol. 59, № 2. PP. 309-314.
Beers R.F., Sizer J.W. Spectrophotometric method for measuring breakdown of hydrogen peroxide catalase // Journal of Biological Chemistry. 1952. № 195. PP. 133-140.
Никерова К.М., Галибина Н.А., Мощенская Ю.Л., Бородина М.Н., Софронова И.Н. Определение активности супероксиддисмутазы и полифенолоксидазы в древесине Betula pendula var. carelica (Betulaceae) при разной степени нарушения ксилогенеза // Растительные ресурсы. 2019. Т. 55, № 2. C. 213-230.
Никерова К.М., Галибина Н.А., Мощенская Ю.Л., Новицкая Л.Л., Подгорная М.Н., Софронова И.Н. Каталазная активность в листовом аппарате у сеянцев березы повислой разных форм (Betula pendula Roth): var. pendula и var. carelica (Mercklin) // Труды КарНЦ РАН. Серия: Экспериментальная биология. 2016. № 11. C. 68-77.
Андросова В.И., Виролайнен П.А. Анатомо-морфологические и физиологические особенности талломов цианолишайника Peltigera praetextata (Florke ex Sommerf.) Zopf разных онтогенетических состояний // Вестник Томского государственного университета. Биология. 2022. № 58. C. 71-95.
Mierziak J., Kostyn K., Kulma A. Flavonoids as important molecules of plant interaction with the environment // Molecules. 2014. Vol. 19, № 10. PP. 16240-16265. 10.3390/molecules 191016240.
Драгавцев В.А., Удовенко Г.В., Батыгин Н.Ф., Климашевский Э.Л., Климашевская Н.Ф., Шевелуха В.С., Ковалев В.М., Курапов П.Б., Гончарова Э.А., Кумаков В.А., Игошин А.П., Зеленский М.И. Физиологические основы селекции растений. Т. 2, ч. 2. СПб.: ВИР, 1995. 648 с.
Grabelnych O.I. The energetic function of plant mitochondria under stress // Soil Biology and Biochemistry. 2005. Vol. 1, № 1. PP. 37-54.
Головко Т.К., Гармаш Е.В. Дыхание растений: классические и современные представления // Физиология растений. 2022. Т. 69, № 6. С. 563-571.
Vitikainen O. Peltigeraceae // Nordic Lichen Flora. 2007. № 3. PP. 113-131.
Westberg M., Ahti T., Thell A. Hypogymnia // Nordic lichen flora. 2011. № 4. PP. 56-62.
Oborny B. The plant body as a network of semi-autonomous agents: a review // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019. Vol. 374, № 1774. PP. 1-11.
Paoli L., Guttova A., Sorbo S., Grassi A., Lackovicova A., Basile A., Senko D., Loppi S. Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): A comparison with green algal lichens // Biologia. 2016. Vol. 71, № 3. PP. 272280.
Cansaran-Duman D., Altunkaynak E., Aslan A., Buyuk L, Aras S. Application of molecular markers to detect DNA damage caused by environmental pollutants in lichen species // Genetics and Molecular Research. 2015. № 14. PP. 4637-4650.
Babelewska A. Application of Scots pine bark and Hypogymnia physodes thallus tests in assessing the impact of industrial contamination in forest communities // Sylwan. 2014. Vol. 158, № 4. РР. 251-257.
Balabanova B., Stafilov T., Sain R., Baeeva Andonovska K. Characterisation of heavy metals in lichen species Hypogymnia physodes and Evernia prunastri due to biomonitoring of air pollution in the vicinity of copper mine // International Journal of Environmental Research. 2012. Vol. 6, № 3. РР. 779-792.
Tripathi A.H., Negi N., Gahtori R., Kumari A., Joshi P., Tewari L.M., Joshi Y., Bajpai R., Upreti D.K., Upadhyay S.K. A review of anti-cancer and related properties of lichen-extracts and metabolites // Anti-Cancer Agents in Medicinal Chemistry. 2022. Vol. 22, № 1. PP. 115-142.
Hell A.F., Gasulla F., Gonzi Lez-Hourcade M.A., Del Campo E.M., Centeno D.C., Casano L.M. Tolerance to Cyclic Desiccation in Lichen Microalgae is Related to Habitat Preference and Involves Specific Priming of the Antioxidant System // Plant Cell Physiol. 2019. Vol. 60, № 8. РР. 1880-1891.
Bajpai R., Pandey A., Deeba F., Upreti D., Nayaka S., Pandey V. Physiological effects of arsenate on transplant thalli of the lichen Pyxine cocoes (Sw.) Nyl. // Environmental science and pollution research international. 2014. № 19. РР. 1494-502.
Beckett R., Minibayeva F., Solhaug K., Roach T. Photoprotection in lichens: adaptations of photobionts to high light // The Lichenologist. 2021. № 53. PP. 21-33.
Shelyakin M., Malyshev R., Silina E., Zakhozhiy I., Golovko T. UV-B induced changes in respiration and antioxidant enzyme activity in the foliose lichen Peltigera aphthosa (L.) Willd. // Acta Physiol Plant. 2022. Vol. 44, № 116.
Sundararaj J.P., Ganesan A., Purusothaman D.K., Ponnusamy P. In vitro evaluation of partially purified antioxidant enzymes from lichen Leptogium papillosum // Asian Journal of Pharmaceutical and Clinical Research. 2016. Vol. 9, № 7. РР. 140-144.
Beckett R., Minibayeva F., Liers C. On the occurrence of peroxidase and laccase activity in lichens // The Lichenologist. 2013. Vol. 45, № 2. PP. 277-283.
Fernandez-Moriano C., Gomez-Serranillos M.P., Crespo A. Antioxidant potential of lichen species and their secondary metabolites. A systematic review // Pharm Biol. 2016. Vol. 54, № 1. РР. 1-17.
Ahmed E., Elkhateeb W., Taie H., Rateb M., Fayad W. Biological capacity and chemical composition of secondary metabolites from representatives Japanese Lichens // Journal of Applied Pharmaceutical Science. 2017. № 7. РР. 98-103.
Aoussar N., Rhallabi N., Rajaa A., Manzali R., Bouksaim M., Douira A., Mellouki F. Seasonal variation of antioxidant activity and phenolic content of Pseudevernia furfuracea, Evernia prunastri and Ramalina farinacea from Morocco // Journal of the Saudi Society of Agricultural Sciences. 2018. № 19.
Aoussar N., Manzali R., Nattah I., Rhallabi N., Vasiljevic P., Bouksaim M., Douira A., Manojlovic N., Mellouki F. Chemical composition and antioxidant activity of two lichens species (Pseudevernia furfuracea L. and Evernia prunastri L.) collected from Morocco // Journal of Materials and Environmental Sciences. 2017. № 8. Рр. 1968-1976.
Dixit P., Maurya A., Mishra T., Upreti D., Pal M. Evaluation of Phytochemical Constituents and Antioxidant activity of the Roccella montagnei // Cryptogam Biodiversity and Assessment. 2017. Vol. 2, № 1. РР. 14-18.
Kosanic M., Rankovic B., Vukojevic J. Antioxidant properties of some lichen species // J Food Sci Technol. 2011. Vol. 48, № 5. PP. 584-590.
Гесслер Н.Н., Аверьянов А.А., Белозерская Т.А. Активные формы кислорода в регуляции развития грибов // Биохимия. 2007. Т. 72, № 10. С. 1342-1364.
Головко Т.К., Силина Е.В., Лашманова Е.А., Козловская А.В. Активные формы кислорода и антиоксиданты в живых системах: интегрирующий обзор // Теоретическая и прикладная экология. 2022. № 1. С. 17-26.
Никерова К.М., Галибина Н.А., Чирва O.B., Климова (Успенская) A.B. Активные формы кислорода и компоненты антиоксидантной системы - участники метаболизма растений. Взаимосвязь с фенольным и углеводным обменом // Труды КарНЦ РАН. Серия: Экспериментальная биология. 2021. № 3. C. 5-20.
Sadowsky A., Ott S. Symbiosis as a successful strategy in continental Antarctica: performance and protection of Trebouxia photosystem II in relation to lichen pigmentation // Polar Biology. 2016. № 39. РР. 139-151.
Sonina A.V., Androsova V.I., Tsunskayay A.A., Suroeva L.E.Comparative study of structural and ecophysiological features of lichens of different ecological groups in rocky forest communities of northernmost boreal zone (Karelia, Russia) // Czech Polar Reports. 2018. Vol. 8, № 2. PP. 186-197.
Gielwanowska I., Olech M. New ultrastractural and physiological features of the thallus in Antarctic lichens // Acta Biologica Cracoviensia Series Botanica. 2012. Vol. 54, № 1. РР. 40-52.