Honey bee selection: achievements, problems, and prospects
The honey bee (Apis mellifera L.) is one of the most important managed insect pollinators worldwide. In recent years, negative processes have been occurring in honey bee populations all over the world, Russia included. Of particular concern are the mass mortality of bees due to decreased adaptation of bee colonies to environmental factors and the hybridization of bees due to replacement of native populations by gentle and productive commercial lines. Nowadays, honey bee selection is a promising area of world beekeeping which is aimed at improving and breeding new lines and breeds that are highly productive, resistant to diseases, and adapted to local climate and honey flow conditions. The review is devoted to the issues of honeybee selection and includes an analysis of the problems and achievements of classical selection, and an assessment of prospects for the introduction of molecular selection into beekeeping. In most selection and breeding programs, economic and behavioral traits, primarily honey productivity, colony strength, gentle temper, and low swarming tendency have been of predominant importance. Other selective traits, such as viability, disease resistance, and local adaptation are considered less significant since their insufficient manifestation can be compensated by caring for the bees, for example, pharmaceuticals, artificial feeding, and other beekeeping methods. Latterly, due to the growing problem of Varroa infestation of bee colonies, breeding programs also consider traits such as hygienic behavior, the growth of Varroa infestation, etc. In Russia, the selection of bees is aimed at obtaining strong colonies that are highly productive in honey, winter-hardy, resistant to diseases, possessing high egg-laying queens, etc. Recently, the genotype-environment interaction and its influence on honey bee health have been of particular interest. These studies demonstrate the relevance of breeding sustainable bee populations and lines adapted to local conditions. This will preserve the diversity of bees, prevent their death, and ensure sustainable productivity and adaptation of bee colonies to environmental changes. In traditional breeding programs, animals are selected and evaluated based on their phenotypic traits and using pedigrees. Such analysis is very labor-intensive, subjective, and considerably time-consuming. Bee selection is complicated by polyandry, male parthenogenesis, free and random mating of queens, death of mated drones, etc. Although the potential of classic breeding methods has not been fully realized yet, modern breeding programs require the use of molecular genetics methods and genomic technologies. The introduction of molecular markers (SSRs, SNP, etc.), sequencing, microarray, and information technology makes it possible to incorporate genetic information into breeding programs and provides more accurate and efficient breeding results. Despite the sequencing of the Apis mellifera genome in 2006, specific genetic markers that could be used in bee selection have not yet been proposed. At the same time, 'Omics' technologies have made it possible to identify various molecular markers (QTL, SNP, RNA, and proteins), which theoretically can be used for the selection and improvement of bee breeds. Quantitative trait loci (QTL) have now been identified, which is associated with queen fertility, disease resistance, and various types of behavior, including hygienic behavior and Varroa-sensitive hygiene in bees. Considerable research interest is aimed at creating bee populations that are resistant to diseases, primarily var-roosis as the biggest threat to global beekeeping, and developing methods for assessing the complex behavior of bees and their effective selection. To assess associations with honey production, gentleness, hygienic behavior, and resistance to the Varroa mite, a high-density SNP chip was developed. It can be used in genomic selection of honeybees and for Genome-Wide Association Studies (GWAS). The successful use of Marker-Associated Selection (MAS) in beekeeping has been demonstrated, namely, DNA markers associated with royal jelly productivity (genes of the mrjp family) have been developed. In 2023, the first study was conducted to estimate the breeding value of a bee reference population based on queen genotyping and it showed that genomic selection can be successfully applied to bees. The use of bee gut microbiome data as markers of colony health and viability in breeding programs is discussed. Thus, honey bee breeding, including molecular selection, provides an increase in the genetic and adaptive potential of existing breeds and the creation of new lines and ecotypes of bees, highly productive and adapted to certain natural and climatic conditions. Selection of honeybees contributes to the development and intensification of beekeeping. Even though the development of DNA markers of productivity, adaptability and resistance to diseases will open up new prospects for genetic selection and provide a significant advantage in time, issues related to the improvement of the classical system of bee selection currently remain relevant. The article contains 4 Figures, 1 Tables, 105 References. The Author declares no conflict of interest.
Keywords
honey bee breeds,
Apis mellifera,
selective traits,
breeding,
DNA markers,
QTL,
molecular selectionAuthors
Ostroverkhova Nadezhda V. | Tomsk State University; Siberian State Medical University | nvostrov@mail.ru |
Всего: 1
References
Damico M.E., Rueppell O., Shaffer Z., Han B., Raymann K. High royal jelly production does not impact the gut microbiome of honey bees // Animal Microbiome. 2021. Vol. 3. 60. doi: 10.1186/s42523-021-00124-1.
Stephan J.G., Lamei S., Pettis J.S., Riesbeck K., de Miranda J.R., Forsgren E. Honeybee-specific lactic acid bacterium supplements have no effect on American Foulbrood-infected honeybee colonies // Applied Environmental Microbiology. 2019. Vol. 85, № 13. e01321-19. doi: 10.1128/AEM.00606-19.
Направления исследований М.Д. Рузского /Research areas of M.D.Ruzsky mellifera and their toxicity against Varroa destructor // Journal of Apicultural Science. 2020. Vol. 64, № 1. PP. 55-66. doi: 10.2478/jas-2020-0009.
De Piano F.G., Maggi M.D., Meroi Arceitto F.R., Audisio M.C., Eguaras M., Ruffinengo S.R. Effects of bacterial cell-free supernatant on nutritional parameters of Apis.
Alberoni D., Baffoni L., Gaggia F., Ryan P.M., Murphy K., Ross P.R., Stanton C., Di Gioia D. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. // Beneficial Microbes. 2017. Vol. 9, № 2. PP. 269-278. doi: 10.3920/BM2017.0061.
Diaz T., Del-Val E., Ayala R., Larsen J. Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods // Pest Management Science. 2019. Vol. 75, № 3. PP. 835-843. doi: 10.1002/ps.5188.
Kim D.Y., Maeng S., Cho S.-J., Park H.J., Kim K., Lee J.K., Srinivasan S. The Asco-sphaera apis infection (Chalkbrood disease) alters the gut bacteriome composition of the honeybee // Pathogens. 2023. Vol. 12, № 5. 734. doi: 10.3390/pathogens12050734.
Jabal-Uriel C., Alba C., Higes M., Rodriguez J.M., Martn-Hemandez R. Effect of Nosema ceranae infection and season on the gut bacteriome composition of the European honeybee (Apis mellifera) // Scientific Reports. 2022. Vol. 12, № 1. 9326. doi: 10.1038/s41598-022-13337-4.
Rouze R., Mone A., Delbac F., Belzunces L., Blot N. The honeybee gut microbiota is altered after chronic exposure to different families of insecticides and infection by Nosema ceranae // Microbes and Environments. 2019. Vol. 34, № 3. PP. 226-233. doi: 10.1264/jsme2.ME18169.
Hubert J., Bicianova M., Ledvinka O., Kamler M., Lester P.J., Nesvorna M., Kopecky J., Erban T. Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria Passim // Microbial Ecology. 2017. Vol. 73, № 3. PP. 685-698. doi: 10.1007/s00248-016-0869-7.
lorizzo M., Ganassi S., Albanese G., Letizia F., Testa B., Tedino C., Petrarca S., Muti-nelli F., Mazzeo A., De Cristofaro A. Antimicrobial activity from putative probiotic lactic acid bacteria for the biological control of American and European foulbrood diseases // Veterinary Sciences. 2022. Vol. 9, № 5. 236. doi: 10.3390/vetsci9050236.
Ellegaard K.M., Engel P. Genomic diversity landscape of the honeybee gut microbiota // Nature Communications. 2019. Vol. 10. 446. doi: 10.1038/s41467-019-08303-0.
Wu J., Lang H., Mu X., Zhang Z., Su Q., Hu X., Zheng H. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission // Microbiome. 2021. Vol. 9, № 1. Article number 225. doi: 10.1186/s40168-021-01174-y.
Vernier C.L., Nguyen L.A., Gernat T., Ahmed A.C., Chen Z., Robinson G.E. Gut microbiota contribute to variations in honey bee foraging intensity // ISME Journal. 2024. Vol. 18, № 1. wrae030. doi: 10.1093/ismejo/wrae030.
Jones J.C., Fruciano C., Marchant J., Hildebrand F., Forslund S., Bork P., Engel P., Hughes W.O.H. The gut microbiome is associated with behavioural task in honey bees // Insectes Sociaux. 2018. Vol. 65. PP. 419-429. doi: 10.1007/s00040-018-0624-9.
Khan S., Somerville D., Frese M., Nayudu M. Environmental gut bacteria in European honey bees (Apis mellifera) from Australia and their relationship to the Chalkbrood disease // PLoS One. 2020. Vol. 15, № 8. e0238252. doi.org/10.1371/journal.pone.0238252.
Raymann K., Moran N.A. The role of the gut microbiome in health and disease of adult honey bee workers // Current Opinion in Insect Science. 2018. Vol. 26. PP. 97-104. doi: 10.1016/j.cois.2018.02.012.
Motta E.V.S., Moran N.A. The honeybee microbiota and its impact on health and disease // Nature Reviews Microbiology. 2024. Vol. 22. PP. 122-137. doi: 10.1038/s41579-023-00990-3.
Ostroverkhova N.V., Kucher A.N., Konusova O.L., Sharakhov I.V. The mrjp3 microsatellite marker: determination of honeybee subspecies or/and royal jelly productivity of bee colony // Far Eastern Entomologist. 2018. № З5З. PP. 24-28. doi: 10.25221/fee.353.3.
Брандорф А.З., Ивойлова М.М. Морфогенетические маркеры медоносных пчел, продуцирующих маточное молочко с высоким содержанием 10-ОДК // Аграрная наука Евро-Северо-Востока. 2019. T. 20, № 3. С. 283-289. doi: 10.30766/2072-9081.2019.20.3.283-289.
Островерхова Н.В., Кучер А.Н., Бабушкина Н.П., Конусова О.Л. Характеристика нуклеотидной последовательности микросателлитного локуса mrjp3 у медоносных пчел разного происхождения // Генетика. 2018. Т. 54, № 3. С. 335-341. doi: 10.7868/S0016675818030062.
Островерхова Н.В. Селекция медоносной пчелы.
Drapeau M.D., Albert S., Kucharski R., Prusko C., Maleszka R. Evolution of the Yel-low/Major royal jelly protein family and the emergence of social behavior in honey bees // Genome Research. 2006. Vol. 16, № 11. PP. 1385-1394. doi: 10.1101/gr.5012006.
Albert S., Klaudiny J., Simuth J. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly // Insect Biochemistry and Molecular Biology. 1999. Vol. 29, № 5. PP. 427-434. doi: 10.1016/s0965-1748(99)00019-3.
Buttstedt A., Moritz R.F.A., Erler S. Origin and function of the major royal jelly proteins of the honeybee (Apis mellifera) as members of the yellow gene family // Biological reviews of the Cambridge Philosophical Society. 2014. Vol. 89, № 2. PP. 255-269. doi: 10.1111/brv. 12052.
Ostroverkhova N.V. Association between the microsatellite Ap243, AC117 and SV185 polymorphisms and Nosema disease in the dark forest bee Apis mellifera mellifera // Veterinary Sciences. 2021. Vol. 8. 2. doi: 10.3390/vetsci8010002.
Huang W.-F., Solter L.F.Comparative development and tissue tropism of Nosema apis and Nosema ceranae // Journal of Invertebrate Pathology. 2013. Vol. 113, № 1. PP. 35-41. doi: 10.1016/j.jip.2013.01.001.
Huang W.F., Solter L., Aronstein K., Huang Z. Infectivity and virulence of Nosema cer-anae and Nosema apis in commercially available North American honey bees // Journal of Invertebrate Pathology. 2015. Vol. 124. PP. 107-113. doi: 10.1016/j.jip.2014.10.006.
Mondet F., Alaux C., Severac D., Rohmer M., Mercer A.R., Le Conte Y. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees // Scientific Reports. 2015. Vol. 5. 10454. doi: 10.1038/srep10454.
Arechavaleta-Velasco M.E., Alcala-Escamilla K., Robles-Rios C., Tsuruda J.M., Hunt G.J. Fine-scale lingkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites // PLoS One. 2012. Vol. 7. e47269. doi: 10.1371/journal.pone.0047269.
Conlon B.H., Aurori A., Giurgiu A.-I., Kefuss J., Dezmirean D.S., Moritz R.F.A., Routtu J. A gene for resistance to the Varroa mite (Acari) in honey bee (Apis mellifera) pupae // Molecular Ecology. 2019. Vol. 28, № 12. PP. 2958-2966. doi: 10.1111/mec.15080.
Lattorff H.M.G., Buchholz J., Fries I., Moritz R.F.A. A selective sweep in a Varroa destructor resistant honeybee (apis mellifera) population // Infection, Genetics and Evolution. 2015. Vol. 31. PP. 169-176. doi: 10.1016/j.meegid.2015.01.025.
Kim J.S., Kim M.J., Kim H.-K., Vung N.N., Kim I. Development of single nucleotide polymorphism markers specific to Apis mellifera (Hymenoptera: Apidae) line displaying high hygienic behavior against Varroa destructor, an ectoparasitic mite // Journal of Asia-Pacific Entomology. 2019. Vol. 22, № 4. PP. 1031-1039. doi: 10.1016/j.aspen.2019.08.005.
Oxley P.R., Spivak M., Oldroyd B.P. Six quantitative trait loci influence task thresholds for hygienic behaviour in honey bees (Apis mellifera) // Molecular Ecology. 2010. Vol. 19, № 7. PP. 1452-1461. doi:10.1111/j.1365-294X.2010.04569.x.
Guarna M.M., Hoover S.E., Huxter E., Higo H., Moon K.M., Domanski D., Bixby M.E.F., Melathopoulos A.P., Ibrahim A., Peirson M., Desai S., Micholson D., White R., Borchers C.H., Currie R.W., Pernal S.F., Desai S. Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees // Scientific Reports. 2017. Vol. 7, № 1. 8381. doi: 10.1038/s41598-017-08464-2.
Каскинова М.Д., Гайфуллина Л.Р., Салтыкова Е.С., Поскряков А.В., Николенко А.Г. Генетические маркеры резистентности медоносной пчелы к Varroa destructor // Вавиловский журнал генетики и селекции. 2020. Т. 24, № 8. С. 853-860. doi: 10.18699/ VJ20.683.
Shrestha M., Wegener J., Gautam I., Singh M., Schwekendiek C., Bienefeld K. Individual-level comparisons of honey bee (Hymenoptera: Apoidea) hygienic behavior towards.
Направления исследований М.Д. Рузского /Research areas of M.D.Ruzsky brood infested with Varroa destructor (Parasitiformes: Varroidae) or Tropilaelaps mer-cedesae (Mesostigmata: Laelapidae) // Insects. 2020. Vol. 11, № 8. 510. doi: 10.3390/in-sects11080510.
Beaurepaire A.L., Sann C., Arredondo D., Mondet F., Le Conte Y. Behavioral genetics of the interactions between Apis mellifera and Varroa destructor // Insects. 2019. Vol. 10, № 9. 299. doi: 10.3390/insects10090299.
Бюхлер Р., Узунов А., Ильясов Р.А., Коста С., Мейкснер М., Ле Конте И., Мондет Ф., Ковачич М., Андонов С., Каррек Н.Л., Димитров Л., Бассо Б., Биенковска М., Далл'олио Р., Хатджина Ф., Вирц У. Проект EURBEST: тестирование пчел на устойчивость к клещу Варроа // Пчеловодство. 2022. № 2. С. 62-64.
Bourgeois A.L., Rinderer T.E. Genetic characterization of Russian honey bee stock selected for improved resistance to Varroa destructor // Journal of Economic Entomology. 2009. Vol. 102, № 3. PP. 1233-1238. doi: 10.1603/029.102.0349.
Danka R.G., Harris J.W., Dodds G.E. Selection of VSH-derived «Pol-line» honey bees and evaluation of their Varroa-resistance characteristics // Apidologie. 2016. Vol. 47. PP. 483-490. doi: 10.1007/s13592-015-0413-7.
Traynor K.S., Mondet F., de Miranda J.R., Techer M., Kowallik V., Oddie M.A.Y., Chantawannakul P., McAfee A. Varroa destructor. A complex parasite, crippling honey bees worldwide // Trends in Parasitology. 2020. Vol. 36, № 7. PP. 592-606. doi: 10.1016/j.pt.2020.04.004.
Wagoner K.M., Spivak M., Rueppell O. Brood affects hygienic behavior in the honey bee (Hymenoptera: Apidae) // Journal of Economic Entomology. 2018. Vol. 111, № 6. PP. 2520-2530. doi: 10.1093/jee/toy266.
Wagoner K., Spivak M., Hefetz A., Reams T., Rueppell O. Stock-specific chemical brood signals are induced by Varroa and deformed wing virus, and elicit hygienic response in the honey bee // Scientific Reports. 2019. Vol. 9. 8753. doi: 1038/s41598-019-45008-2.
Eynard S.E., Sann C., Basso B., Guirao A.-L., Le Conte Y., Servin B., Tison L., Vignal A., Mondet F. Descriptive analysis of the Varroa non-reproduction trait in honey bee colonies and association with other traits related to varroa resistance // Insects. 2020. Vol. 11, № 8. 492. doi: 10.3390/insects11080492.
Morfin N., Espinosa-Montano L.G., Guzman-Novoa E. A direct assay to assess selfgrooming behavior in honey bees (Apis mellifera L.) // Apidologie. 2020. Vol. 51. PP. 892897. doi: 10.1007/s13592-020-00769-y.
Leclercq G., Pannebakker B., Gengler N., Nguyen B.K., Francis F. Drawbacks and benefits of hygienic behavior in honey bees (Apis mellifera L.): a review // Journal Apicultural Research. 2017. Vol. 56, № 4. PP. 366-375. doi: 10.1080/00218839.2017.1327938.
Khan K.A., Ghramh H.A. An investigation of the efficacy of hygienic behavior of various honey bee (Apis mellifera) races toward Varroa destructor (Acari: Varroidae) mite infestation // Journal of King Saud University - Science. 2021. Vol. 33, № 3. 101393. doi: 10.1016/j.jksus.2021.101393.
Брандорф А.З., Шестакова А.И., Свищук Д.В., Ларькина Е.О. Сравнительная характеристика гигиенического поведения медоносных пчел разного породного происхождения // XII International scientific-practical Conference. Section IX. Biotechnologies: Collection of scientific papers. Brussels, 2021. PP. 123-128. doi: 10.18411/gq-31-03-2021-27.
Kefuss J., Vanpoucke J., Bolt M., Kefuss C. Selection for resistance to Varroa destructor under commercial beekeeping conditions // Journal of Apicultural Research. 2015. Vol. 54, № 5. PP. 563-576. doi: 10.1080/00218839.2016.1160709.
Buchler R., Kovacic M., Buchegger M., Puskadija Z., Hoppe A., Brascamp E.W. Evaluation of traits for the selection of Apis mellifera for resistance against Varroa destructor // Insects. 2020. Vol. 11, № 9. 618. doi: 10.3390/insects11090618.
Fries I., Hansen H., Imdorf A., Rosenkranz P. Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden // Apidologie. 2003. Vol. 34. PP. 389-397. doi: 10.1051/apido:2003032.
Le Conte Y., De Vaublanc G., Crauser D., Jeanne F., Rousselle J.-C., Becard J.-M. Honey bee colonies that have survived Varroa destructor // Apidologie. 2007. Vol. 38, № 6. PP. 566-572. doi: 10.1051/apido:2007040.
De la Mora A., Emsen B., Morfm N., Borges D., Eccles L., Kelly P.G., Goodwin P.H., Guzman-Novoa E. Selective breeding for low and high Varroa destructor growth in honey bee (Apis mellifera) colonies: Initial results of two generations // Insects. 2020. Vol. 11, № 12. 864. doi: 10.3390/insects11120864.
Locke B. Natural Varroa mite-surviving Apis mellifera honeybee populations // Apidolo-gie. 2016. Vol. 47. PP. 467-482. doi: 10.1007/s13592-015-0412-8.
Rinderer T.E., Harris J.W., Hunt G.J., de Guzman L.I. Breeding for resistance to Varroa destructor in North America // Apidologie. 2010. Vol. 41, № 3. PP. 409-424. doi: 10.1051/apido/2010015.
Beaurepaire A.L., Krieger K.J., Moritz R.F.A. Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance // Infection, Genetics and Evolution. 2017. Vol. 50. PP. 49-54. doi: 10.1016/j.meegid.2017.02.011.
Plettner E., Eliash N., Singh N.K., Pinnelli G.R., Soroker V. The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents // Apidologie. 2017. Vol. 48, № 1. PP. 78-92. doi: 10.1007/s13592-016-0452-8.
Le Conte Y., Meixner M.D., Brandt A., Carreck N.L., Costa C., Mondet F., Buchler R. Geographical distribution and selection of European honey bees resistant to Varroa destructor // Insects. 2020. Vol. 11, № 12. 873. doi: 10.3390/insects11120873.
Levin S., Sela N., Erez T., Nestel D., Pettis J., Neumann P., Chejanovsky N. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana // Viruses. 2019. Vol. 11, № 2. 94. doi: 10.3390/v11020094.
Posada-Florez F., Childers A.K., Heerman M.C., Egekwu N.I., Cook S.C., Chen Y., Evans J.D., Ryabov E.V. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner // Scientific Reports. 2019. Vol. 9. 12445. doi: 10.1038/s41598-019-47447-3.
Wilfert L., Long G., Leggett H.C., Schmid-Hempel P., Butlin R., Martin S.J.M., Boots M. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites // Science. 2016. Vol. 351, № 6273. PP. 594-597. doi: 10.1126/science.aac9976.
Warner S., Pokhrel L.R., Akula S.M., Ubah C.S., Richards S.L., Jensen H., Kearney G.D. A scoping review on the effects of Varroa mite (Varroa destructor) on global honey bee decline // Science of the Total Environment. 2024. Vol. 906. 167492. doi: 10.1016/j.sci-totenv.2023.167492.
Oddie M.A.Y., Dahle B., Neumann P. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection // PeerJ. 2017. Vol. 5. e3956. doi: 10.7717/peerj.3956.
Vilarem C., Piou V., Vogelweith F., Vetillard A. Varroa destructor from the laboratory to the field: control, biocontrol and IPM perspectives - A review // Insects. 2021. Vol. 12, № 9. Article number 800. doi: 10.3390/insects12090800.
Beaurepaire A.L., Piot N., Doublet V., Antunez K., Campbell E., Chantawannakul P., Che-janovsky N., Gajda A., Heerman M., Panziera D., Smagghe G., Yanez O., de Miranda J.R., Dalmon A. Diversity and global distribution of viruses of the western honey bee, Apis mel-lifera // Insects. 2020. Vol. 11, № 4. Article number 239. doi: 10.3390/insects11040239.
Shorter J.R., Arechavaleta-Velasco M., Robles-Rios C., Hunt G.J. A genetic analysis of the stinging and guarding behaviors of the honey bee // Behavior Genetics. 2012. Vol. 42, № 4. PP. 663-674. doi: 10.1007/s10519-012-9530-5.
Направления исследований М.Д. Рузского /Research areas of M.D.Ruzsky.
Ruppell O., Pankiw T., Page R.E.Jr. Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior // Journal of Heredity. 2004. Vol. 95, № 6. PP. 481491. doi: 10.1093/jhered/esh072.
Rueppell O., Metheny J.D., Linksvayer T., Fondrk M.K., Page R.E.Jr., Amdam G.V. Genetic architecture of ovary size and asymmetry in European honeybee workers // Heredity. 2011. Vol. 106, № 5. PP. 894-903. doi: 10.1038/hdy.2010.138.
Wakchaure R., Ganguly S., Praveen P.K., Kumar A., Sharma S., Mahajan T. Marker Assisted Selection (MAS) in animal breeding: a review // Drug Metabolism and Toxicology. 2015. Vol. 6, № 5. e127. doi: 10.4172/2157-7609.1000e127.
Landaverde R., Rodriguez M.T., Parrella J.A. Honey production and climate change: beekeepers’ perceptions, farm adaptation strategies, and information needs // Insects. 2023. Vol. 14, № 6. PP. 493-493. doi: 10.3390/insects14060493.
Gajardo-Rojas M., Munoz A.A., Barichivich J., Klock-Barra K., Gayo E.M., Fontur-bel F.E., Olea M., Lucas C.M., Veas C. Declining honey production and beekeeper adaptation to climate change in Chile // Progress in Physical Geography: Earth and Environment. 2022. Vol. 46, № 5. PP. 737-756. doi: 10.1177/03091333221093757.
Maucourt S., Fortin F., Robert C., Giovenazzo P. Genetic parameters of honey bee colonies traits in a Canadian Selection Program // Insects. 2020. Vol. 11, № 9. Article number 587. doi: 10.3390/insects11090587.
Рокицкий П.Ф. Введение в статистическую генетику. Минск : Вышейшая школа, 1978. 448 с.
Bernstein R., Du M., Du Z.G., Strauss A.S., Hoppe A., Bienefeld K. First large-scale genomic prediction in the honey bee // Heredity. 2023. Vol. 130. PP. 320-328. doi: 10.1038/s41437-023-00606-9.
Sharma P., Doultani S., Hadiya K.K., George L.B., Highland H.N. Overview of marker-assisted selection in animal breeding // Journal of Advances in Biology and Biotechnology. 2024. Vol. 27, № 5. PP. 303-318. doi: 10.9734/JABB/2024/v27i5790.
Косолапов В.М., Козлов Н.Н., Клименко И.А. Геномная селекция: этапы развития // Вестник Российской сельскохозяйственной науки. 2018. № 1. С. 8-12.
Francis R.M., Amiri E., Meixner M.D., Kryger P., Gajda A., Andonov S., Uzunov A., To-polska G., Charistos L., Costa C., Berg S., Bienkowska M., Bouga M., Buchler R., Dyrba W., Hatjina F., Ivanova E., Kezic N., Korpela S., Le Conte Y., Panasiuk B., Pechhacker H., Tsoktouridis G., Wilde J. Effect of genotype and environment on parasite and pathogen levels in one apiary - a case study // Journal of Apicultural Research. 2014. Vol. 53, № 2. PP. 230-232. doi: 10.3896/IBRA.1.53.2.14.
Williams J.L. The use of marker-assisted selection in animal breeding and biotechnology // Revue scientifique et technique. 2005. Vol. 24, № 1. PP. 379-391.
Хлесткина Е.К. Молекулярные маркеры в генетических исследованиях и в селекции // Вавиловский журнал генетики и селекции. 2013. Т. 17, № 4/2. С. 1044-1054.
Guichard M., Phocas F., Neuditschko M., Basso B., Dainat B. An overview of selection concepts applied to honey bees // Bee World. 2023. Vol. 100, № 1. PP. 2-8. doi: 10.1080/0005772X.2022.2147702.
Goddard M.E., Hayes B.J. Mapping genes for complex traits in domestic animals and their use in breeding programmes // Nature Reviews Genetics. 2009. Vol. 10. PP. 381-391. doi: 10.1038/nrg2575.
Кривцов Н.И. Среднерусские пчёлы. СПб. : Лениздат, 1995. 123 с.
Брандорф А.З., Ивойлова М.М. Методическое руководство по проведению селекционно-племенной оценки медоносных пчел среднерусской породы. Киров : НИИСХ Северо-Востока, 2015. 40 с.
Guichard M., Dainat B., Eynard S., Vignal A., Servin B., the Beestrong Consortium, Neuditschko M. Identification of quantitative trait loci associated with calmness and gentleness in honey bees using whole-genome sequences // Animal Genetics. 2021. Vol. 52, № 4. PP. 472-481. doi: 10.im/age.13070.
Saelao P., Simone-Finstrom M., Avalos A., Bilodeau L., Danka R., Guzman L., Rinkevich F., Tokarz P. Genome-wide patterns of differentiation within and among U.S.commercial honey bee stocks // BMC Genomics. 2020. Vol. 21. Article number 704. 12 p. doi: 10.n86/s12864-020-07rn-x.
Trapp J., McAfee A., Foster L.J. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees // Molecular Ecology. 2017. Vol. 26, № 3. PP. 718-739. doi: 10.1111/mec.13986.
Grozinger C.M., Robinson G.E. The power and promise of applying genomics to honey bee health // Current Opinion in Insect Science. 2015. Vol. 10. PP. 124-132. doi: 10.1016/j.cois.2015.03.007.
Ostroverkhova N.V., Kucher A.N., Babushkina N.P., Konusova O.L., Sharakhov I.V. Variability and structure of the repetitive region of the major royal jelly protein gene mrjp3 in honeybee Apis mellifera of different evolutionary branches // Journal of Molecular Biology Research. 2018. Vol. 8, № 1. PP. 122-131. doi:10.5539/jmbr.v8n1p122.
Parpinelli R.S., Ruvolo-Takasusuki M.C.C., Toledo V.A.A. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production // Genetics and Molecular Research. 2014. Vol. 13, № 3. PP. 6724-6733. doi: 10.4238/2014.Au-gust.28.16.
Nie H., Liu X., Pan J., Li W., Li Z., Zhang S., Chen S., Miao X., Zheng N., Su S. Identification of genes related to high royal j elly production in the honey bee (Apis mellifera) using microarray analysis // Genetics and Molecular Biology. 2017. Vol. 40, № 4. PP. 781-789. doi: 10.1590/1678-4685-GMB-2017-0013.
Holloway B.A., Tarver M.R., Rinderer T.E. Fine mapping identifies significantly associating markers for resistance to the honey bee brood fungal disease, Chalkbrood // Journal of Apicultural Research. 2013. Vol. 52, № 3. PP. 134-140. doi: 10.3896/IBRA. 1.52.3.04.
Baitala T.V., Faquinello P., Toledo V.A.A., Mangolin C.A., Martins E.N., Ruvolo-Ta-kasusuki M.C.C. Potential use of major royal jelly proteins (MRJPs) as molecular markers for royal jelly production in Africanized honeybee colonies // Apidologie. 2010. Vol. 41, № 2. PP. 160-168. doi: 10.1051/apido/2009069.
Holloway B.A., Sylvester H.A., Bourgeois L., Rinderer T.E. Association of single nucleotide polymorphisms to resistance to chalkbrood in Apis mellifera // Journal of Apicultural Research. 2012. Vol. 51, № 2. PP. 154-163. doi: 10.3896/IBRA.1.51.2.02.
Spotter A., Gupta P., Numberg G., Reinsch N., Bienefeld K. Development of a 44K SNP assay focussing on the analysis of a varroa-specific defence behaviour in honey bees (Apis mellifera carnica) // Molecular Ecology Resources. 2012. Vol. 12, № 2. PP. 323-332. doi: 10.1111/j.1755-0998.2011.03106.x.
Tsuruda J.M., Harris J.W., Bourgeois L., Danka R.G., Hunt G.J. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees // PLoS One. 2012. Vol. 7, № 11. e48276-10. 8 p. doi: 10.1371/journal.pone.0048276.
Каскинова М.Д., Гайфуллина Л.Р., Салтыкова Л.Р., Поскряков А.Г., Николенко А.Г. Маркер-опосредованная селекция медоносной пчелы Apis mellifera L. // Актуальная биотехнология. 2020. № 3. С. 189-190. doi: 10.20914/2304-4691-2020-3-189-190.
Юнусбаев У.Б., Каскинова М.Д., Ильясов Р.А., Гайфуллина Л.Р., Салтыкова Е.С., Николенко А.Г. Роль полногеномных исследований в изучении биологии медоносной пчелы // Генетика. 2019. Т. 55, № 7. С. 778-787. doi: 10.1134/S0016675819060201.
Островерхова Н.В., Кучер А.Н. Биохимические и молекулярно-генетические маркеры в селекции медоносной пчелы // Пчеловодство. 2019. № 3. С. 20-23.
Кривцов Н.И. Селекционные признаки пчел // Пчеловодство. 2009. № 2. С. 20-22.
Абдулгазина Н.М., Юмагужин Ф.Г. Зависимость медовой продуктивности пчел от их породной принадлежности. Влияние ферментов медоносных пчел на их хозяйственно полезные качества // Фундаментальные исследования. 2014. № 9 (10). С. 2177-2180. URL: https://fundamental-research.ru/ru/artide/view?id=35291 (дата обращения: 22.05.2024).
Направления исследований М.Д. Рузского /Research areas of M.D.Ruzsky.
Бородачев А.В., Бурмистров А.Н., Касьянов А.И., Кривцова Л.С., Кривцов Н.И., Лебедев В.И., Мартынов А.Г., Соловьева Л.Ф., Харитонов Н.Н. и др. Методы проведения научно-исследовательских работ в пчеловодстве / под ред. Я.Л. Шагуна. Рыбное : НИИП, 2006. 154 с.
Altaye S.Z., Meng L., Li J. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee (Apis mellifera ligustica) selected for increasing royal jelly production // Apidologie. 2019. Vol. 50. PP. 436-453. doi: 10.1007/s13592-019-00656-1.
Nekoei S., Rezvan M., Khamesipour F., Mayack C., Molento M.B., Revainera P.D. A systematic review of honey bee (Apis mellifera, Linnaeus, 1758) infections and available treatment options // Veterinary Medicine and Science. 2023. Vol. 9, № 4. PP. 1848-1860. doi: 10.1002/vms3.1194.
Nowak A., Szczuka D., Gorczynska A., Motyl I., Krgiel D. Characterization of Apis mel-lifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection - a review // Cells. 2021. Vol. 10. Article number 701. doi: 10.3390/cells10030701.
Smutin D., Lebedev E., Selitskiy M., Panyushev N., Adonin L. Micro"bee"ota: honey bee normal microbiota as a part of superorganism // Microorganisms. 2022. Vol. 10, № 12. Article number 2359. doi: 10.3390/microorganisms10122359.
Morfin N., Anguiano-Baez R., Guzman-Novoa E. Honey bee (Apis mellifera) immunity // Veterinary Clinics of North America: Food Animal Practice. 2021. Vol. 37, № 3. PP. 521533. doi: 10.1016/j.cvfa.2021.06.007.
Mondet F., Beaurepaire A., McAfee A., Locke B., Alaux C., Blanchard S., Danka B., Le Conte Y. Honey bee survival mechanisms against the parasite Varroa destructor, a systematic review of phenotypic and genomic research efforts // International Journal for Parasitology. 2020. Vol. 50, № 6-7. PP. 433-447. doi: 10.1016/j.ijpara.2020.03.005.
Jones J.C., Du Z.G., Bernstein R., Meyer M., Hoppe A., Schilling E., Ableitner M., Juling K., Dick R., Strauss A.S., Bienefeld K. Tool for genomic selection and breeding to evolutionary adaptation: Development of a 100K single nucleotide polymorphism array for the honey bee // Ecology and Evolution. 2020. Vol. 10, № 13. PP. 6246-6256. doi: 10.1002/ece3.6357.
Ostroverkhova N.V., Konusova O.L., Kucher A.N., Kireeva T.N., Rosseykina S.A. Prevalence of the microsporidian Nosema spp. in honey bee populations (Apis mellifera) in some ecological regions of North Asia // Veterinary Sciences. 2020. Vol. 7, № 3. Article number 111. 17 p. doi: 10.3390/vetsci7030111.
Ostroverkhova N.V., Kucher A.N., Konusova O.L., Kireeva T.N., Sharakhov I.V. Genetic diversity of honeybees in different geographical regions of Siberia // International Journal of Environmental Studies. 2017. Vol. 74, № 5. PP. 771-781. doi: 10.1080/00207233.2017.1283945.
Spotter A., Gupta P., Mayer M., Reinsch N., Bienefeld K. Genome-wide association study of a Farroa-specific defense behavior in honeybees (Apis mellifera) // Journal of Heredity. 2016. Vol. 107, № 3. PP. 220-227. doi: 10.1093/jhered/esw005.
Hu H., Bienefeld K., Wegener J., Zautke F., Hao Y., Feng M., Han B., Fang Y., Wubie A.J., Li J. Proteome analysis of the hemolymph, mushroom body, and antenna provides novel insight into honeybee resistance against varroa infestation // Journal of Proteome Research. 2016. Vol. 15, № 8. PP. 2841-2854. doi: 10.1021/acs.jproteome.6b00423.
Boutin S., Alburaki M., Mercier P.-L., Giovenazzo P., Derome N. Differential gene expression between hygienic and non-hygienic honeybee (Apis mellifera L.) hives // BMC Genomics. 2015. Vol. 16. Article number 500. doi: 10.1186/s12864-015-1714-y.
Ilyasov R.A., Kutuev I.A., Petukhov A.V., Poskryakov A.V., Nikolenko A.G. Phylogenetic relationships of dark European honeybees Apis mellifera mellifera L. from the Russian Ural and West European populations // Journal of Apicultural Science. 2011. Vol. 55, № 1. PP. 67-76.
Frunze O., Brandorf A., Kang E.-J., Choi Y.-S. Beekeeping genetic resources and retrieval of honey bee Apis mellifera L. stock in the Russian Federation: A review // Insects. 2021. Vol. 12, № 8. Article number 684. doi: 10.3390/insects12080684.
De la Rua P., Jaffe R., Dall'Olio R., Munoz I., Serrano J. Biodiversity, conservation and current threats to European honeybees // Apidologie. 2009. Vol. 40, № 3. PP. 263-284. doi: 10.1051/apido/2009027.
Ilyasov R.A., Nikolenko A.G., Lee M.L., Kwon H.W., Takahashi J.I. A revision of subspecies structure of western honey bee Apis mellifera // Saudi Journal of Biological Sciences. 2020. Vol. 27, № 12. PP. 3615-3621. doi: 10.1016/j.sjbs.2020.08.001.
Каскинова М.Д., Салихова А.М., Гайфуллина Л.Р., Салтыкова Е.С. Генетические методы в селекции медоносной пчелы // Вавиловский журнал генетики и селекции. 2023. Т. 27, № 4. С. 366-372. doi: 10.18699/VJGB-23-44.
Островерхова Н.В., Конусова О.Л. Некоторые проблема: идентификации подвидов медоносной пчелы и их решение на примере изучения Apis mellifera в Сибири // Сельскохозяйственная биология. 2022. Т. 57, № 2. С. 283-303. doi: 10.15389/agrobiol-ogy.2022.2.283rus.
Островерхова Н.В., Россейкина С.А., Конусова О.Л., Кучер А.Н., Киреева Т.Н. Разнообразие медоносной пчелы Apis mellifera L. в Томской области по морфометрическим и молекулярно-генетическим маркерам // Вестник Томского государственного университета. Биология. 2019. № 47. С. 142-173. doi: 10.17223/19988591/47/8.
Ильясов Р.А., Поскряков А.В., Петухов А.В., Николенко А.Г. Молекулярно-генетический анализ пяти сохранившихся резерватов темной лесной пчелы Apis mellifera mellifera Урала и Поволжья // Генетика. 2016. Т. 52, № 8. С. 931-942. doi: 10.7868/S0016675816060059.
Басонов О.А., Гиноян Р.В., Козминская А.С., Асадчий А.А. Генотипирование как фактор совершенствования племенных и продуктивных качеств скота // Известия Кабардино-Балкарского государственного аграрного университета им. В.М. Кокова. 2023. № 4 (42). С. 87-102. doi: 10.55196/2411-3492-2023-4-42-87-102.
Калашников А.Е., Голубков А.И., Труфанов В.Г., Гостева Е.Р., Ялуга В.Л., Прожерин В.П. Геномная селекция как основа племенной работы (обзор) // Вестник Крас-ГАУ. 2021. № 7 (172). С. 163-170. doi: 10.36718/1819-4036-2021-7-163-170.
Столповский Ю.А., Пискунов А.К., Свищева Г.Р. Геномная селекция. I. Последние тенденции и возможные пути развития // Генетика. 2020. Т. 56, № 9. С. 1006-1017. doi: 10.31857/S0016675820090143.
Яблуновский М.Ю., Усчеев Н.А., Надбитов Н.К., Зулаев М.С. Целенаправленная селекция - основа повышения продуктивности овец // Вестник Института комплексных исследований аридных территорий. 2012. № 2 (25). С. 106-109.
Смарагдов М.Г. Геномная селекция молочного скота в мире. Пять лет практического использования // Генетика. 2013. Т. 49, № 11. С. 1251-1260. doi: 10.7868/S001667581310010X.
Смарагдов М.Г. Тотальная геномная селекция с помощью SNP как возможный ускоритель традиционной селекции // Генетика. 2009. Т. 45. С. 725-728.
Buchler R., Berg S., Le Conte Y. Breeding for resistance to Varroa destructor in Europe // Apidologie. 2010. Vol. 41, № 3. PP. 393-408. doi: 10.1051/apido/2010011.
Kovacic M., Puskadija Z., Drazic M.M., Uzunov A., Meixner M.D., Buchler R. Effects of selection and local adaptation on resilience and economic suitability in Apis mellifera carnica // Apidologie. 2020. Vol. 51, № 11. PP. 1062-1073. doi: 10.1007/s13592-020-00783-0.
Taha E.A., Al-Kahtani S.N.Comparison of the activity and productivity of Carniolan (Apis mellifera carnica Pollmann) and Yemeni (Apis mellifera jemenitica Ruttner) subspecies under environmental conditions of the Al-Ahsa oasis of eastern Saudi Arabia // Saudi Journal of Biological Sciences. 2019. Vol. 26, № 4. PP. 681-687. doi: 10.1016/j.sjbs.20r7.10.009.
Al-Ghamdi A.A., Adgaba N., Tadesse Y., Getachew A., Al-Maktary A.A.Comparative study on the dynamics and performances of Apis mellifera jemenitica and imported hybrid honeybee colonies in southwestern Saudi Arabia // Saudi Journal of Biological Sciences. 2017. Vol. 24, № 5. PP. 1086-1093. doi: 10.1016/j.sjbs.2017.01.008.
Meixner M.D., Kryger P., Costa C. Effects of genotype, environment, and their interactions on honey bee health in Europe // Current Opinion in Insect Science. 2015. Vol. 10. PP. 177184. doi: 10.1016/j.cois.2015.05.010.
Hatjina F., Costa C., Buchler R., Uzunov A., Drazic M., Filipi J., Charistos L., Ruottinen L., Andonov S., Meixner M.D., Bienkowska M., Dariusz G., Panasiuk B., Le Conte Y., Wilde J., Berg S., Bouga M., Dyrba W., Kiprijanovska H., Korpela S., Kryger P., Lodesani M., Pechhacker H., Petrov P., Kezic N. Population dynamics of European honey bee genotypes under different environmental conditions // Journal of Apicultural Research. 2014. Vol. 53, № 2. PP. 233-247. doi: 10.3896/IBRA.1.53.2.05.
Ostroverkhova N.V., Rosseykina S.A., Yaltonskaya I.A., Filinov M.S. Estimates of the vitality and performances of Apis mellifera mellifera and hybrid honey bee colonies in Siberia: a 13-year study // PeerJ. 2024. Vol. 12. e17354. doi: 10.7717/peerj.17354 8. 9.
Краинка и карника - что за пчелы? URL: https://dzen.ru/a/Yc9A991qs2mH9_uz (дата обращения: 24.05.2024).
Buchler R., Costa C., Hatjina F., Andonov S., Meixner M.D., Le Conte Y., Uzunov A., Berg S., Bienkowska M., Bouga M., Drazic M., Dyrba W., Kryger P., Panasiuk B., Pechhacker H., Petrov P., Kezic N., Korpela S., Wilde J. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe // Journal of Apicultural Research. 2014. Vol. 53, № 2. PP. 205-214. doi: 10.3896/IBRA.1.53.2.03.
Бородачев А.В., Савушкина Л.Н., Бородачев В.А. Выведение и особенности пчел породного типа «Приокский» // Вестник Российской сельскохозяйственной науки. 2017. № 1. С. 62-65.
Гранкин Н.Н. Тип среднерусских пчел «Орловский» // Пчеловодство. 2008. № 4. С. 8-9.
Косарев М.Н., Шарипов А.Я., Юмагужин Ф.Г., Савушкина Л.Н. Селекция породного типа «Бурзянская бортевая пчела» // Пчеловодство. 2011. № 6. С. 10-13.
Уфимцева Н.С., Осинцева Л.А. Породу: и методу: разведения медоносной пчелы Apis mellifera L. : учеб. пособие. Новосибирск : НГАУ, 2009. 47 с.
Neumann P., Carreck N.L. Honey bee colony losses // Journal of Apicultural Research. 2010. Vol. 49, № 1. PP. 1-6. doi: 10.3896/IBRA.1.49.1.01.
Van Engelsdorp D., Traynor K.S., Andree M., Lichtenberg E.M., Chen Y., Saegerman C., Cox-Foster D.L. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology // PLoS One. 2017. Vol. 12, № 7. e0179535. 23 p. doi: 10.1371/jour-nal.pone.0179535.
Кашковский В.Г. Инбридинг в пчеловодстве и племенная работа // Инновации и продовольственная безопасность. 2022. №» 4 (38). С. 87-99. doi: 10.31677/2311-0651-2022-38-4-87-99.
Монахова М.А., Горячева И.И., Кривцов Н.И. Генетическая паспортизация Apis mellifera. Проблемы и методы // Пчеловодство. 2009. № 4. С. 12-13.
Пчеловодство и селекция пчел / Зооинженерный факультет РГАУ-МСХА. URL: https://www.activestudy.info/pchelovodstvo-i-selekciya-pchel/(дата обращения: 24.05.2024).
Среднерусская порода медоносных пчёл в стратегии развития мирового пчеловодства: монография / под общ. ред. А.З. Брандорф, М.М. Ивойловой. Киров : ФАНЦ Северо-Востока, 2019. 220 с.
Кривцов Н.И., Лебедев В.И. Роль науки в развитии современного пчеловодства России // Вестник Рязанского государственного агротехнологического университета им. П.А. Костычева. 2011. № 3 (11). С. 3-5.