Hydromorphic soils of natural and disturbed landscapes of the Tura-Tavda interfluve (south of Western Siberia)
The presented paper is devoted to the ecological and geochemical features of natural and anthropogenically disturbed soils of lake-wetland landscapes of the Tura-Tavda interfluve. Hydromorphic landscapes occupy a significant area within the territory under consideration and play a key role in ensuring the sustainable development of the entire region, performing a number of important ecosystem functions. The intensification of anthropogenic pressure in the south of the Tyumen Oblast, caused by an increase in the area and population of cities, as well as the intensification of agriculture, also affects lake and wetland ecosystems. A striking example of such an impact can be hydromorphic landscapes in the vicinity of the city of Tyumen, which underwent a radical transformation as a result of drainage melioration, peat extraction and subsequent agricultural activity and urbanization. The result of the following process was an intensive transformation of the soil and vegetation cover associated with both mechanical disturbances and drying out, and chemical pollution. The purpose of this study was to assess the evidence of characteristic soil-forming processes and their influence on the structure, properties and geochemical features of soils of hydromorphic landscapes of the Tura-Tavda interfluve. The novelty of the presented research lies in the fact that the combined behavior of inorganic pollutants in similar soils of the territory under consideration has been studied for the first time. The background soil, represented by Sapric Calcic Histosol under a linden-aspen forest, and the soil of a heavily disturbed area, Sapric Drainic Histosol, were studied. Research methods included methods of soil morphology when describing soil profiles, micromorphology of soil thin sections for analysis of expression and intensity of soil-forming processes, as well as chemical analysis of soil, including measurements of pH, Eh, electrical conductivity (EC) and total dissolved solids (TDS) by the potentiometric method in suspension, organic carbon content (Corg) by the titrimetric method, CaCO3 content by the gas-volumetric method, mass loss on ignition (LOI), exchange cations Ca2+ and Mg2+, particle size distribution by sedimentation method with pyrophosphate preparation. The macro- and microelement composition (Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr, Pb) of the soils was determined using X-ray fluorescence analysis. Statistical analysis of the data was carried out using the STATISTICA 12 “StatSoft” package (USA). Signs of anthropogenic transformation of the profile in Sapric Drainic Histosol are noted, such as reduced thickness of organogenic and organomineral horizons and the absence of signs of carbonate formation (See Fig. 1), which, on the contrary, are manifested at the micro level in thin sections of Sapric Calcic Histosol (See Fig. 2). There are significant differences in the values of such parameters as pH, Eh, Corg, LOI, as well as sand fraction content for natural and disturbed soils (See Fig. 3). The levels of most elements in the two soils do not differ significantly: Mg (4.7 and 5.1 mg/kg), Ca (51.9 and 35.4 mg/kg), Mn (445.5 and 521.2 mg /kg), Fe (20.7 and 15.5 mg/kg), Cu (5.2 and 8.2 mg/kg), Zn (31 and 37.2 mg/kg), Sr (146.8 and 144.9 mg/kg), Pb (12.9 and 10.7 mg/kg) (See Fig. 4). Compared with the world-soil average, the disturbed hydro-morphic soils of the Tarman bog massif have higher contents of Cr, Mn, Co, As. Correlation analysis made it possible to identify associations of elements, characterized by close relationships (R > 0.576; p < 0.05), which indicates a similar nature of their behavior and a common origin in the hydromorphic soils of the Tura-Tavda interfluve (See Fig. 5). The levels and profile distribution of metals in the soils under consideration, despite significant differences and the history and nature of anthropogenic impact, demonstrated similar values and features. This fact indirectly indicates that even significant anthropogenic impact does not always transform the trends laid down as a result of long-term development of ecosystems and soils. In general, it is possible to note the presence of indirect interrelations between the prevailing set of soil-forming processes and their expression and the features of the radial geochemical structure of natural and disturbed soils. The article contains 5 Figures, 40 References. The authors express their gratitude to Sergei V. Loiko for participation in the field study. The Authors declare no conflict of interest.
Keywords
heavy metals,
soil-forming processes,
physicochemical properties of soils,
Histosols,
profile differentiation,
Tyumen OblastAuthors
Konstantinov Alexandr O. | Tomsk State University | konstantinov.alexandr72@gmail.com |
Konstantinova Elizaveta Yu. | Southern Federal University | konstantliza@gmail.com |
Novoselov Andrey A. | University of Tyumen | mr.andreygeo@mail.ru |
Zaitseva Varvara Yu. | Tomsk State University | varvara.zaitseva.geo@gmail.com |
Kurasova Alina O. | Tomsk State University | kurasovalina@gmail.com |
Всего: 5
References
Болота Западной Сибири - их роль в биосфере. 2-е изд. / под ред. А.А. Земцова. Томск: ТГУ, СибНИИТ, 2000. 72 с.
Kirpotin S.N., Berezin A., Bazanov V., Polishchuk Y., Vorobiov S., Mironycheva-Tokoreva N., Kosykh N., Volkova I., Dupre B., Pokrovsky O., Kouraev A., Zakharova E., Shirokova L., Mognard N., Biancamaria S., Viers J., Kolmakova M. Western Siberia wetlands as indicator and regulator of climate change on the global scale // International Journal of Environmental Studies. 2009. Vol. 66. PP. 409-421.
Kirpotin S.N., Antoshkina O.A., Berezin A.E., Elshehawi S., Feurdean A., Lapshina E.D., Pokrovsky O.S., Peregon A.M., Semenova N.M., Tanneberger F., Volkov I.V., Volkova I.I., Joosten H. Great Vasyugan Mire: How the world's largest peatland helps addressing the world's largest problems // Ambio. 2021. Vol. 50. PP. 2038-2049.
Ковалева Е., Яковлев А. Экологические функции болотных экосистем (на примере острова Сахалин) // Экология и промышленность России. 2017. Т. 21, № 12. С. 32-37.
Глаголев М.В., Клепцова И.Е., Филиппов И.В., Казанцев С.В., Мачида Т., Максютов Ш.Ш. Эмиссия метана из болотных ландшафтов подтайги Западной Сибири: к "стандартной модели" Вc5 // Вестник Московского университета. Серия 17: Почвоведение. 2010. № 2. С. 43-50.
Головацкая Е.А., Дюкарев Е.А. Влияние факторов среды на эмиссию СО2 с поверхности олиготрофных торфяных почв Западной Сибири // Почвоведение. 2012. № 6. С. 658-667.
Raudina T.V., Smirnov S.V., Lushchaeva I.V., Istigechev G.I., Kulizhskiy S.P., Golovatskaya E.A., Shirokova L.S., Pokrovsky O.S. Seasonal and spatial variations of dissolved organic matter biodegradation along the aquatic continuum in the southern taiga bog complex, Western Siberia // Water. 2022. Vol. 14, № 23. PP. 3969.
Шмыглева А.В. Антропогенное воздействие как фактор деградации экосистем Западной Сибири в советский период // Вестник Сургутского государственного педагогического университета. 2017. № 6 (51). С. 48-54.
Синюткина А.А., Гашкова Л.П., Малолетко А.А., Магур М.Г., Харанжевская Ю.А. Трансформация поверхности и растительного покрова осушенных верховых болот юго-востока Западной Сибири // Вестник Томского государственного университета. Биология. 2018. № 43. C. 196-223.
Инишева Л.И., Аристархова В.Е., Порохина Е.В., Боровкова А.Ф. Выработанные торфяные месторождения, их характеристика и функционирование. Томск: ТГПУ, 2007. 224 с.
Sinyutkina А.А. Drainage consequences and self-restoration of drained raised bogs in the south-eastern part of Western Siberia: Peat accumulation and vegetation dynamics // Catena. 2021. Vol. 205. PP. 105464.
Kharanzhevskaya Yu.A. Seasonal stream water chemistry response to long-term forestry drainage and wildfire: A case study in a part of the Great Vasyugan Mire // Geography, Environment, Sustainability. 2024. Vol. 17, № 1. PP. 44-53.
Зайдельман Ф.Р. Деградация мелиорируемых почв России и сопредельных стран в результате антропогенного изменения их водного режима и способы защиты // Использование и охрана природных ресурсов в России. 2014. № 4. С. 24-30.
Ильясов Д.В., Сирин А.А., Суворов Г.Г., Метелева М.М., Маслов А.А., Мулдашев А.А., Широких П.С., Бикбаев И.Г., Мартыненко В.Б. Почвы и растительность антропогенно-измененного торфяника в степной зоне (на примере массива Берказан-Камыш, Башкирия) // Агрохимия. 2018. № 12. С. 46-59.
Казаков А.А. Дистанционное геотермическое картографирование болот Западной Сибири (на примере Тарманского болотного массива) // Вестник Тюменского государственного университета. 2013. № 4. С. 161-167.
Моторин А.С. Агрохимические свойства торфяных почв Северного Зауралья и их трансформация // Мелиорация и водное хозяйство. 2022. № 6. С. 12-16.
Konstantinov A., Novoselov A., Konstantinova E., Loiko S., Kurasova A., Minkina T.Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia) // Soil Science Annual. 2020. № 71 (1). PP. 3-14.
Konstantinov A., Konstantinova E., Novoselov A., Kurasova A., Shuvaev E., Sherstnev A., Zaitseva V., Minkina T. Geochemical status of non-reclaimed ash dumps subj ected to longterm self-overgrowing: Evidence from the Tyumen, Russia // Journal of Geochemical Exploration. 2024. Vol. 258. 107387.
Гиберт К.А., Кустышева И.Н. Совершенствование функционирования мелиорационных систем с целью эффективности водопонижения на территории г. Тюмени // Интерэкспо Гео-Сибирь. 2023. Т. 4, № 2. С. 18-23.
Konstantinov A., Konstantinova E., Smirnov P., Minkina T., Batalin G., Gareev B., Mingazov G., Loiko S. Assessment of soil development during rapid urbanization using the carbon and nitrogen stable isotope composition // Environmental Geochemistry and Health. 2023. Vol. 45. PP. 9123-9134.
Konstantinova E., Novoselov A., Konstantinov A., Minkina T., Sushkova S., Loiko S. Evaluating the effect of historical development on urban soils using microartifacts and geochemical indices // Environmental Geochemistry and Health. 2023. Vol. 45. PP. 121-136.
Каретин Л.Н. Почвы Тюменской области. Новосибирск: Наука, 1990. 286 с.
Московченко Д.В. Биогеохимические особенности верховых болот Западной Сибири // География и природные ресурсы. 2006. № 1. С. 63-70.
Урусевская И.С., Алябина И.О., Шоба С.А. Карта почвенно-экологического районирования Российской Федерации. Масштаб 1:8 000 000. Пояснительный текст и легенда к карте: учеб. пособие. М.: МАКС Пресс, 2020. 100 с.
Грехова И.В. Ботанический состав и степень разложения низинных торфов в Тюменской области // Известия Иркутского государственного университета. Серия: Биология. Экология. 2012. Т. 5, № 2. С. 9-12.
Калюжный И.Л. Изменение химического состава болотных вод при мелиорации евтрофного болотного массива // Труды Инсторфа. 2022. № 25 (78). С. 3-11.
Шишов Л.Л., Тонконогов В.Д., Лебедева И.И., Герасимова М.И. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 341 с.
IUSS Working Group WRB. World Reference Base for Soil Resources.International soil classification system for naming soils and creating legends for soil maps. 4th edition. Vienna: International Union of Soil Sciences (IUSS), 2022. 234 p.
Теории и методы физики почв / под ред. Е.В. Шеина, Л.О. Карпачевского. М.: Гриф и Ко, 2007. 616 с.
Теория и практика химического анализа почв / под ред. Л.А. Воробьевой. М.: ГЕОС, 2006. 400 с.
М-049-ПДО/18. Методика измерений массовой доли металлов и оксидов металлов в порошковых пробах почв и донных отложений рентгенофлуоресцентным методом. СПб.: ООО "НПО "Спектрон", 2018. 18 с.
de Campos F.F., Licht O.A.B. Correlation Diagrams: graphical visualization of geochemical associations using the EzCorrGraph app // Journal of Geochemical Exploration. 2021. № 220. 106657.
Ryabogina N.E., Afonin A.S., Ivanov S.N., Li H.-C., Kalinin P.A., Udaltsov S.N., Nikolaenko S.A. Holocene paleoenvironmental changes reflected in peat and lake sediment records of Western Siberia: Geochemical and plant macrofossil proxies // Quaternary International. 2019. Vol. 528. PP. 73-87.
Элементарные почвообразовательные процессы: опыт концептуального анализа, характеристика, систематика / под ред. Н.А. Караваевой, С.В. Зонна. М.: Наука, 1992. 184 с.
Kabata-Pendias A., Szteke B. Trace Elements in Abiotic and Biotic Environments. Boca Raton: CRC Press, 2015. 440 p.
Водяницкий Ю.Н., Шоба С.А. Биогеохимические барьеры для ремедиации почв и очистки почвенно-грунтовых вод // Вестник Московского университета. Серия 17: Почвоведение. 2016. № 3. С. 3-15.
Липатов Д.Н., Щеглов А.И., Манахов Д.В., Брехов П.Т. Пространственная неоднородность свойств торфяных почв верховых болот в условиях локального пирогенеза на северо-востоке острова Сахалин // Почвоведение. 2016. № 2. С. 261-274.
Wang X., Sun Y., Li S., Wang H. Spatial distribution and ecological risk assessment of heavy metals in soil from the Raoyanghe Wetland, China. PLoS ONE. 2019. Vol. 14, № 8. e0220409.
Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. Boca Raton: CRC Press, 2011. 548 p.
Korkanç S.Ya., Korkanç M., Amiri A.F. Effects of land use/cover change on heavy metal distribution of soils in wetlands and ecological risk assessment // Science of The Total Environment. 2024. Vol. 923. 171603.