Differentiation of climatic ecotypes in Siberian dwarf pine (Pinus pumila (Pall.) Regel): in situ research experience
In the boreal zone, few forest-forming conifers have huge ranges within which the species are differentiated into climatic ecotypes. This phenomenon has been well studied using the example of upright species. Their geographical and climatic range is several times smaller than that of the Siberian dwarf pine. However, large differences in productivity and stability of contrasting climatic ecotypes were found in all species when they were cultivated under the same conditions. In this work, the ecotypes of the Siberian dwarf pine were studied at experimental sites outside its natural range in the southern part of Western Siberia where the sum of active temperatures was 1850°C. In the main experiment, four ecotypes represented the longitude transect from the Northern Baikal Region to the Southern Kuriles (where the sum of temperatures varies from 800 to 1800 degrees, respectively) (See Table 1). The indicators of total productivity (trunk diameter, crown volume) increased slightly from the Siberian ecotypes to the Far Eastern ones, i.e. from the most continental to the most oceanic ecotype (See Table 2). The most significant differences were in two characteristics important for the breeding of ornamental cultivars: the shape of the crown and the color of the needles. The Siberian ecotypes had a narrow crown and a bluish color of needles. The Far Eastern ecotypes, especially from the South Kuril, had a wide crown and bright blue needles (See Fig. 1). Thus, despite the huge variety of climatic conditions within the range, the basic differences in growth rate between Siberian dwarf pine ecotypes are much smaller than in other boreal conifer species. Outside the tropical zone, winter conditions are the main climatic factor for trees. Pinus pumila is a chionophilic species which always winters under snow cover. The "undersnow" climate is about the same in different regions. Apparently, this is the main reason for the small basic differences between ecotypes in terms of growth rate and living status. The main experiment was conducted in a place relatively protected from spring frosts. There were also no significant sources of pest (wooly aphid, Pineus cembrae) in this place. In other experiment where external destructive factors acted in full force the differences between the ecotypes were much greater (See Table 2). The South Kuril ecotype surpassed the Siberian one by 2 times in height, 4 times in crown diameter, and 22 times in crown volume! Such huge differences in productivity were explained almost exclusively by different resistance to external factors. The South Kuril ecotype was completely uninhabited by wooly aphid, it rarely and slightly damaged by spring frosts. The Siberian ecotype was regularly and seriously damaged by these factors. Thus, the higher the sum of the active temperatures in the places of origin of the ecotypes, the higher their stability and productivity at the test site. The differences were small in the absence of secondary negative factors but they increased sharply under the influence of spring frosts and pests. P. pumila is a unique species in terms of originality and decorativeness. Our results clearly indicate its prospects in Southern Siberia. Paradoxically, the Far Eastern ecotypes are more relevant for this region than the Siberian ones. They are perfectly resistant and decorative regardless of the growing conditions. The South Kuril ecotype occupies a special place as the most stable and the most decorative. The article contains 2 Figures, 5 Tables and 49 References. The Author declares no conflict of interest.
Keywords
upright and creeping conifer species,
provenance test,
growth,
productivity,
sustainability,
decorativeness,
spring frost,
wooly aphid,
introduction,
breedingAuthors
Goroshkevich Sergey N. | Institute of monitoring of climatic and ecological systems, Siberian branch of Russian Academy of Sciences | pearldiver@yandex.ru |
Всего: 1
References
Kayes I., Mallik A. Boreal Forests: Distributions, Biodiversity, and Management // Life on Land. Encyclopedia of the UN Sustainable Development Goals. Springer Nature Switzerland AG, 2020. PP. 1-12.
Klisz M., Chakraborty D., Cyietkovio B., Grabner M., Lintunen A., Mayer K., George J-PP., Rossi S. Functional traits of boreal species and adaptation to local conditions // Boreal Forests in the Face of Climate Change: Sustainable Management. Springer, 2023. PP. 323355.
Morgenstern M. Geographic variation in forest trees: Genetic basis and application of knowledge in silviculture. Vancouver: UBC Press, 2011. 209 p.
Langlet O. Two hundred years of gynecology. Taxon. 1971. Vol. 20. PP. 653-722.
Matyas C. Climatic adaptation of trees: rediscovering provenance tests // Euphytica. 1996. Vol. 92 (1). PP. 45-54.
Critchfield W.B., Little E.L. Geographic distribution of the pines of the world // U.S. Department of Agriculture, Forest Service, Washington, DC: Misc. Publ., 1966. 97 p.
Швиденко А.З., Щепащенко Д.Г. Что мы знаем о лесах России сегодня? Лесная таксация и лесоустройство. 2011. Вып. 1-2. С. 45-46.
Auders A.G., Spicer D.P. Royal Horticultural society encyclopedia of conifers - a comprehensive guide to cultivars and species. Vols 1 & 2. Nicosia, Cyprus: Kingsblue Publishing Ltd., in assoc. with the Royal Horticultural Society, London, 2012. 1500 p.
Ладейщиков Н.П. Особенности климата крупных озер (на примере Байкала). М.: Наука, 1982. 138 с.
Каракин В.П. Мелкомасштабное природно-хозяйственное районирование побережья Тихоокеанской России по природным условиям освоения // Тихоокеанская география. 2020. № 1. С. 59-69.
Хоментовский П.А. Экология кедрового стланика (Pinuspumila (Pall.) Regel) на Камчатке (общий обзор). Владивосток: Дальнаука, 1995. 227 с.
Агроклиматический атлас мира / под ред. И.А. Г ольцберг. М.; Л.: Г идрометеоиздат, 1972. 160 с.
Goroshkevich S.N., Popov A.G., Vasilieva G.V. Ecological and morphological studies of hybrid zone between Pinus sibirica and Pinus pumila // Annals of Forest Research. 2008. Vol. 51. PP. 43-52. doi: 10.15287./afr.2008.144.
Кривец С.А., Коровинская Е.Н. Экология сибирского кедрового хермеса в селекционных культурах кедра сибирского в Томской области // Известия Санкт-Петербургской лесотехнической академии. 2009. № 187. С. 159-167.
Neale D.B., Wheeler N.C. The Conifers: Genomes, Variation and Evolution. Cham, Switzerland: Springer, 2019. 608 p.
Hereford J. A quantitative survey of local adaptation and fitness trade-offs // The American Naturalist. 2009. № 173. PP. 579-588.
Zhuk E.A., Goroshkevich S.N. Growth and reproduction in Pinus sibirica ecotypes from Western Siberia in a common garden experiment // New Forests. 2018. Vol. 49. PP. 159172.
Bossdorf O., Prati D., Auge H., Schmid B. Reduced competitive ability in an invasive plant // Ecology Letters. 2004. Vol. 7. PP. 346-353.
Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Koppen-Geiger climate classification // Hydrology and Earth System Sciences. 2007. Vol. 11. Pp. 1633-1644.
Rehfeldt G.E., Ying C.C., Spittlehouse D.L., Hamilton D.A. Genetic responses to climate in Pinus contorta: Niche breadth, climate change and reforestation // Ecological Monographs. 1999. Vol. 69 (3). PP. 375-407.
St. Clair J.B., Mandel N.L., Vance-Borland K.W. Genecology of Douglas-fir in western Oregon and Washington // Annals of Botany. 2005. Vol. 96 (7). PP. 1199-1214.
Wang T., O'Neill G.A., Aitken S.N.Integrating environmental and genetic effects to predict responses of tree populations to climate // Ecological Applications. 2010. Vol. 20 (1). PP. 153-163.
Agrawal A., Conner J., Rasmann S. Trade-offs and negative correlations in evolutionary ecology // Evolution After Darwin: the First 150 Years. Oxford: Sinauer Associates, 2010. PP. 243-268.
Aitken S.N., Bemmels J.B. Time to get moving: Assisted gene flow of forest trees // Evolutionary Applications. 2016. Vol. 9. PP. 271-290.
Hussain A., Classens G., Guevara-Rozo S., Cale J.A., Rajabzadeh R., Peters B.R., Erbilgin N. Spatial variation in soil available water holding capacity alters carbon mobilization and allocation to chemical defenses along jack pine stems // Environmental and Experimental Botany. 2020. Vol. 171. 103902.
Endara M.J., Coley P.D. The resource availability hypothesis revisited: A meta-analysis. Functional Ecology. 2011. Vol. 25. PP. 389-398.
Тихомиров Б.А. Кедровый стланик, его биология и использование. М.: Изд-во МОИП, 1949. 105 с.
Павлов А.В. Теплофизика ландшафтов. Новосибирск: Наука, 1979. 285 с.
Берман Д.И., Важенин Б.П. Бессмертен ли кедровый стланик? // Природа. 2014. № 9. С. 34-47.
Inouye D.W. The ecological and evolutionary significance of frost in the context of climate change // Ecology Letters. 2000. Vol. 3 (5). PP. 457-463. 10.1046/j. 1461-0248.2000.00165.x.
Andersson Gull B., Persson T., Fedorkov A., Mullin T.J. Longitudinal differences in Scots pine shoot elongation // Silva Fennica. 2018. Vol. 52, № 5. 10040.
Wuhlisch G. von, Krusche D., Muhs H.J. Variation in temperature sum requirement for flushing of beech provenances // Silvae Genetica. 1995. Vol. 44 (5-6). PP. 343-346.
Danusevicius D., Persson B. Phenology of natural Swedish populations of Picea abies as compared with introduced seed sources // Forest Genetics. 1998. Vol. 5 (4). PP. 211-220.
Leather S.R. Resistance to foliage-feeding insects in conifers: implications for pest management.Integrated Pest Management Reviews. 1996. Vol. 1. PP. 163-180.
Speight M.R., Wainhouse D. Ecology and management of forest insects. Oxford: Clarendon Press, 1989. 374 p.
Hanover J.W. Forest trees resistant to insects // Breeding plants resistant to insect. New York: John Wiley and Sons, 1980. PP. 487-512.
Домрачев Д.В., Карпова Е.В., Горошкевич С.Н., Ткачев А.В. Сравнительный анализ летучих веществ хвои пятихвойных сосен северной и восточной Евразии // Химия растительного сырья. 2011. № 4. С. 89-98.
Гроссет Г.Э. К изучению экологии кедрового стланика (Pinuspumila Rgl.). Механизм активного полегания при наступлении морозов // Бюл. МОИП. Отдел биологический. 1959. Т. 64, вып. 2. С. 85-96.
Okitsu S. Forest vegetation of northern Japan and southern Kuriles // Forest vegetation of northeast Asia. Dordrecht, Kluwer, 2003. Pp. 231-261.
Wright J.W., Kung F.H., Read R.A., Lemmien W.A., Bright J.N. Genetic variation in Rocky Mountain Douglas-fir // Silvae Genetica. 1971a. Vol. 20. PP. 54-60.
Wright J.W., Lemmien W.A., Bright J.N. early growth of ponderosa pine ecotypes in Michigan // Forest Science. 1969. Vol. 15. PP. 169-174.
Wright J.W., Lemmien W.A., Bright J.N. Genetic variation in southern Rocky Mountain wight fir // Silvae Genetica. 1971b. Vol. 20. PP. 148-150.
Reicoski D.A., Hanover J.W. Physiological effects of surface waxes: I. Light reflectance for glaucous and nonglaucous Picea pungens // Plant Physiology. 1978 Vol. 62 (1). PP. 101-104.
Clark J.B., Lister G.R. Photosynthetic Action Spectra of Trees: II. The Relationship of Cuticle Structure to the Visible and Ultraviolet Spectral Properties of Needles from Four Coniferous Species // Plant Physiology. 1975. № 55 (2). РР. 407-413.
Welling A., Palva, E.T. Molecular control of cold acclimation in trees // Physiologia Plantarum. 2006. Vol. 127. PP. 167-181.
Лучник З.И. Интродукция деревьев и кустарников в Алтайском крае. М.: Колос, 1970. 656 с.
Шаманова С.И., Кузьмин С.Б., Казарновский С.Г., Плешанов А.С. Географические закономерности распространения голубой ели на Хамар-Дабане // Г еография и природные ресурсы. 2013. № 4. С. 73-83.
Rehfeldt G.E. Evolutionary genetics, the biological species and the ecology of the Interior cedar-hemlock forests // Proceedings of the interior cedar-hemlock-white pine forests: Ecology and management. Pullman: Washington State University, 1994. PP. 91-100.
Орлова Л.В., Фирсов Г.А., Трофимук Л.П., Карамышева А.В. Кедровый стланик (Pinus pumila (Pall.) Regel, Pinaceae) - история изучения, современное состояние в ботанических садах Санкт-Петербурга и перспективы его использования в озеленении на Северо-Западе России // Hortus Botanicus. 2019. № 14. С. 100-123.