Isolation and study of the epiphytic yeast strain Rhodotorula mucilaginosa AgIV RCAM05019 (Basidiomycota)
The pigmented yeast Rhodotorula, which belongs to the division Basidiomycota, family Sporidiobolaceae, and class Microbotryomycetes, is found in a wide variety of natural reservoirs, including air, soil, freshwater, seawater, plant substrates, and milk. This yeast is distributed from tropical regions to the permafrost of the Arctic Circle. Various strains of Rhodotorula are considered safe and promising biotechnological candidates for the production of a wide range of biologically active substances, such as proteins, lipids, and vitamins. However, despite its low pathogenicity, an increasing number of studies are reporting on the pathogenic potential of this species, including cases of dermatomycosis in immunocompromised patients. The aim of this study was to obtain and investigate the cultural, morphological, physiological, and biochemical properties of the yeast strain Rhodotorula mucilaginosa AglV RCAM05019, as well as to explore its potential use as a source of feed protein. The objects of this research were the yeast strain Rhodotorula mucilaginosa AglV, which was previously isolated from the epiphytic yeast complex found in the fruiting bodies of the champignon Agaricus sp. This strain was obtained from the microbiological monitoring laboratory within the Department of Applied Biology and Microbiology at Astrakhan State Technical University. Additionally, the collection strain of Candida tropicalis SK-4-1 was provided by the All-Russian Scientific Research Institute of Agriculture (Pushkin) to serve as a control strain for the experimental enhancement of cell biomass under various submerged cultivation modes. Obtaining a pure culture, analyzing cultural-morphological and physiological-biochemical characteristics, assessing growth kinetics, conducting deep cultivation on an orbital shaker, performing periodic cultivation in a fermenter, and carrying out physicochemical studies to determine biomass quality were carried out using standard methods. The yeast strain under investigation was identified through Sanger sequencing, which determined the nucleotide sequence of a fragment of the ITS region at the All-Russian Research Institute of Agricultural Microbiology in Pushkin. This strain has been deposited in the Departmental Collection of Beneficial Microorganisms for Agricultural Purposes under registration number RCAM05019 (FGBNU "VNIISKHM"). The safety of the yeast strain, including its toxicity, toxigenicity, virulence, and dissemination potential, was evaluated in white male Balb/c mice. On solid Sabouraud medium, the studied strain of Rhodotorula mucilaginosa AgIV RCAM05019 exhibited growth in the form of a smooth, shiny, mucus-like streak of bright pink color. It did not penetrate the surface of the nutrient medium (see Fig. 1a) and formed a large pale pink colony on morphological agar (see Fig. 1b). Microscopic examination revealed round-shaped cells measuring 1.5-2.3 pm (see Fig. 1c). The results of the analysis of micro-, macromorphological, and physiological-biochemical characteristics are presented in the block diagram (see Fig. 2). When comparing the analyzed nucleotide sequences with those deposited in BLAST, the species Rhodotorula mucilaginosa was identified as the closest match to the strain under study, with a similarity of 99%. The R. mucilaginosa AglV strain RCAM05019 has been deposited in GenBank under accession number PP531621. No signs of acute toxicity, toxigenicity, virulent properties, or dissemination effects were observed in the identified strain of R. mucilaginosa AglV RCAM05019; this strain did not result in the death of laboratory animals. The mice remained active and mobile, with clean skin and unchanged fur. They exhibited a normal appetite and reactions, did not lose weight, and the surfaces of their internal organs appeared smooth, with no visible pathology, normal coloration, and a dense structure (see Tables 3 and 4). When assessing growth kinetics, the most significant effect was observed in the growth medium containing molasses, which is characterized by a pronounced exponential growth phase of the test strain (see Fig. 3). When the stock culture was established using depth culture on an orbital shaker, intensive growth of R. mucilaginosa AglV RCAM05019 strain cells (107 cells/mL) was detected as early as one day after the initiation of the culture, in contrast to the control strain C. tropicalis CK-4-1 (4.0 x 106 cells/mL) (see Table 1). From the analysis of experimental data obtained during periodic cultivation in a fermenter, it was established that the R. mucilaginosa AglV RCAM05019 strain (6.0 x 107 cells/mL) accumulates biomass in a shorter period compared to the C. tropicalis CK-4-1 strain (5.0 x 107 cells/mL) (see Table 1). The quality indicators of the biomass for the tested strains meet the requirements outlined in regulatory documentation: moisture mass fraction for R. mucilaginosa AglV RCAM05019 is 11.5%, while for C. tropicalis CK-4-1 it is 11.8%; ash mass fraction for R. mucilaginosa AglV RCAM05019 is 7.0%, and for C. tropicalis CK-4-1 it is 7.8%; and the mass fraction of crude protein for R. mucilaginosa AglV RCAM05019 is 67%, whereas for C. tropicalis CK-4-1 it is 48% (see Table 2). The article contains 4 Figures, 4 Tables, 45 References. The authors declare no conflict of interest.
Keywords
Rhodotorula mucilaginosa,
Basidiomycota,
identification,
single-cell protein,
feed protein,
toxigenicity,
toxicity,
disseminationAuthors
Lutsenko Anna V. | Astrakhan State Medical University of the Ministry of Health of Russian Federation; Astrakhan State Technical University | ahrapova@yandex.ru |
Soprunova Olga B. | Astrakhan State Technical University | soprunova@mail.ru |
Всего: 2
References
Глушакова А.М., Качалкин А.В., Желтикова Т.М., Чернов И.Ю. Дрожжевые грибы, ассоциированные с ветроопыляемыми растениями, ведущими пыльцевыми аллергенами в средней полосе России // Микробиология. 2015. Т. 84, № 5. С. 612-615. doi: 10.7868/S0026365615050080.
Parmar T.S., Gothalwal R., Sahay S. Rhodotorula Mucilaginosa: Two Faces of the Yeast // International Journal of Scientific Research in Engineering and Management. 2022. Vol. 6 (8). PP. 1-9. doi: 10.55041/IJSREM16196.
Sahay S., Khan A.M., Butt M., Sahu T., Rana R.S., Chouhan D., Ranjan K., Hamid B. Rhodatorula mucilaginosa PT1 can form arthrospore in response to cold temperature // Journal of Coastal Life Medicine. 2014. Vol. 2 (2). PP. 141-145. doi: 10.12980/JCLM. 2.2014J25.
Sen D., Paul K., Saha C., Mukherjee G., Nag M., Ghosh S., Das A., Seal A., Tripathy S. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1 - a comparative genomics viewpoint // DNA Research. 2019. Vol. 26 (2). PP. 131-146. doi: 10.1093/dnares/dsy044.
Zalar P., Gunde-Cimerman N. Cold-adapted yeasts in arctic habitats. Berlin; Heidelberg : Springer, 2014. PP. 49-74.
Li Z., Li C., Cheng P., Yu G. Rhodotorula mucilaginosa - alternative sources of natural carotenoids, lipids, and enzymes for industrial use // Heliyon. 2022. Vol. 8 (11). e11505. doi: 10.1016/j.heliyon.2022.e11505.
Wirth F., Goldani L. Z. Experimental Rhodotorulosis infection in rats // Apmis. 2012. Vol. 120 (3). PP. 231-235. doi: 10.1111/j.1600-0463.2011.02829.x.
Gualberto N.C., Pedreira Nogueira J., de Souza da Silva A., Barbosa P.F., Morais Santana Matos C., Rajan M., Santos Leite Neta M.T., Narain N. Optimization of the biotechnological process using Rhodotorula mucilaginosa and acerola (Malpighia emarginata L.) seeds for the production of bioactive compounds // LWT. 2022. Vol. 60. 113190. doi: 10.1016/j.lwt.2022.113190.
Mannazzu I., Landolfo S., Lopes da Silva T., Buzzini P. Red yeasts and carotenoid production: outlining a future for non-conventional yeasts of biotechnological interest // World Journal of Microbiology and Biotechnology. 2015. Vol. 31. PP. 1665-1673. doi: 10.1007/s11274-015-1927-x.
Maoka T. Carotenoids as natural functional pigments // Journal of natural medicines. 2020. Vol. 74 (1). PP. 1-16. doi: 10.1007/s11418-019-01364-x.
Jach M.E., Serefko A., Ziaja M. Yeast protein as an easily accessible food source // Metabolites. 2022. Vol. 12 (1). 63. doi: 10.3390/metabo12010063.
Matassa S., Boon N., Pikaar I., Verstraete W. Microbial protein: future sustainable food supply route with low environmental footprint // Microbial Biotechnology. 2016. Vol. 9 (5). PP. 568-575. doi: 10.1111/1751-7915.12369.
Sheth U., Patel S. Production, Economics, and Marketing of Yeast Single Cell Protein // Food Microbiology Based Entrepreneurship: Making Money from Microbes. Singapore: Springer Nature Pte Ltd., 2023. PP. 133-152. doi: 10.1007/978-981-19-5041-4_8.
Ritala A., Hakkinen S.T., Toivari M., Wiebe M.G. Single cell protein-state-of-the-art, industrial landscape and patents 2001-2016 // Front. Microbiol. 2017. Vol. 8. 2009. doi: 10.3389/fmicb.2017.02009.
Michalik B., Biel W., Lubowicki R., Jacyno E. Chemical composition and biological value of proteins of the yeast Yarrowia lipolytica growing on industrial glycerol // Can. J. Anim. Sci. 2014. Vol. 94 (1). PP. 99-104. doi: 10.4141/cjas2013-05.
Pang Y., Zhang H., Wen H., Wan H., Wu H., Chen Y., Li S., Zhang L., Sun X., Li B., Liu X. Yeast probiotic and yeast products in enhancing livestock feeds utilization and performance: An overview // Journal of Fungi. 2022. Vol. 8 (11). 191. doi: 10.3390/ jof8111191.
Луценко А В., Сопрунова О.Б. Выделение и изучение эпифитного штамма Agboola J.O., Lapena D., 0verland M., 0verlie Amtzen M., Mydland L.T., 0vrum Hansen J. Yeast as a novel protein source-Effect of species and autolysis on protein and amino acid digestibility in Atlantic salmon (Salmo salar) // Aquaculture. 2022. Vol. 546. 737312. doi: 10.1016/j.aquaculture.2021.737312.
Barra M., Llanos-Rivera A., Cruzat F., Pino-Maureira N., Gonzalez-Saldia R. The marine fungi Rhodotorula sp. (Strain CNYC4007) as a potential feed source for fish larvae nutrition // Marine Drugs. 2017. Vol. 15 (12). 369. doi: 10.3390/md15120369.
Chen X.Q., Zhao W., Xie S-W., Xie J-J., Zhang Z-H., Tian L-X., Liu Y-J., Niu J. Effects of dietary hydrolyzed yeast (Rhodotorula mucilaginosa) on growth performance, immune response, antioxidant capacity and histomorphology of juvenile Nile tilapia (Oreo-chromis niloticus) // Fish & Shellfish Immunology. 2o19. Vol. 90. PP. 30-39. doi: 10. 1016/j.fsi.2019.03.068.
Храпова А.В., Сопрунова О.Б. Скрининг новых штаммов дрожжей для получения кормового белка // Известия Самарского научного центра Российской академии наук. 2011. Т. 13, № 5-3. С. 210-214.
Бабьева И.П., Чернов И.Ю. Биология дрожжей. М. : Товарищество науч. изд. КМК, 2004. 239 с.
Максимова И.А. Руководство к практическим занятиям по биологии дрожжей. Тула : Гриф и К., 2006. 96 с.
Кудрявцев В.И. Систематика дрожжей. М. : АН СССР, 1954. 428 с.
Kurtzman C. The yeasts: a taxonomic study / ed. by C. Kurtzman, J.W. Fell, T. Boekhout.Netherlands : Elsevier, 2011. 2071 p.
Zhou Y.J., Buijs N.A., Zhu Z., Siewers J.Q., Nielsen J. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories // Nature Communications. 2016. Vol. 7. PP. 1-44. doi: 10.1038/ncomms11709.
Нетрусов А.И. Практикум по микробиологии. М. : Академия, 2005. 608 с.
Егоров Н.С. Руководство к практическим занятиям по микробиологии. 3-е изд. М. : Изд-во МГУ, 1995. 224 с.
Савчик А.В., Новик Г.И. Каротиноидсинтезируюшде дрожжевые грибы и их применение в биотехнологии (обзор литературы) // Пищевая промышленность: наука и технологии. 2021. Т. 13, № 3. С. 70-83.
Igreja W.S., Andrade Maia F., Santos Lopes A., Campos Chiste R. Biotechnological production of carotenoids using low cost-substrates is influenced by cultivation parameters: A review // International Journal of Molecular Sciences. 2021. Vol. 22 (16). 8819. doi: 10.3390/ijms22168819 ГОСТ 20083-74.
Дрожжи кормовые. Технические условия. М. : ГОСТ, 1993. 60 с.
МУ 2620-82. Методические указания, по гигиенической оценке, микробным средствам зашиты растений от насекомых и болезней на основе неспорообразуюших микроорганизмов (утв. Минздравом СССР 22.10.1982). Киев : Минздрав СССР, 1982. 23 с.
ГОСТ 33044-2014. Принципа: надлежащей лабораторной практики (с поправкой). М. : Стандартинформ, 2019. 16 с.
Миронов А.Н. Руководство по проведению доклинических исследований лекарственных средств. М. : Гриф и К., 2012. 944 с.
Nilsson R.H., Anslan S., Bahram M., Wurzbacher C., Baldrian P., Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi // Nature Reviews Microbiology. 2019. Vol. 17 (2). PP. 95-109. doi: 10.1038/s41579-018-0116-y.
Zhang L., Xiao M., Wang H., Gao R., Fan X., Brown M., Gray T.G., Kong F., Xu Y-C. Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China // Journal of Clinical Microbiology. 2014. Vol. 52 (2). PP. 572-577. doi: 10.1128/jcm.02543-13.
Machado W.R.C., Murari C.S., Ferrarezi Duarte A.L., Del Bianchi B.L. Optimization of agro-industrial coproducts (molasses and cassava wastewater) for the simultaneous production of lipids and carotenoids by Rhodotorula mucilaginosa // Biocatalysis and Agricultural Biotechnology. 2022. 102342. doi: 10.1016/j.bcab.2022.102342.
Rodrigues T.V.D., Amore T.D., Teixeira E.C., Fernandes de Medeiros Burkert J. Carotenoid production by Rhodotorula mucilaginosa in batch and fed-batch fermentation using agroindustrial byproducts // Food technology and Biotechnology. 2019. V. 57 (3). 388. doi: 10.17113/ftb.57.03.19.6068.
Гоголева И.В. Математическая модель скорости роста микроорганизмов путем регулирования степени аэрации в питательной среде // Наука и образование: новое время. 2019. № 2. С. 56-59.
Фирсова М.С., Евграфова В.А., Потехин А.В. Подбор питательной среды и оптимизация режима глубинного культивирования Avibacterium paragallinarum // Ветеринария сегодня. 2019. № 2 (29). С. 12-16. doi: 10.29326/2304-196X-2019-2-29-12-16.
Колпакова В.В., Уланова Р.В., Куликов Д.С., Гулакова В.А., Васильева Л.В., Берестовская Ю.Ю., Черемных Е.Г., Ашихмин А.А. Использование экологически безопасного микромицета рода Rhodotorula для получения кормового каротинсодержащего концентрата // Юг России: экология, развитие. 2022. Т. 17, № 4. С. 61-78. doi: 10.18470/1992-1098-2022-4-61 -78.
Campos-Valdez A., Kirchmayr M.R., Barrera-Martinez I., Casas-Godoy L. Sustainable production of single-cell oil and protein from wastepaper hydrolysate: identification and optimization of a Rhodotorula mucilaginosa strain as a promising yeast // FEMS Yeast Research. 2023. Vol. 23. foad044. doi: 10.1093/femsyr/foad044.
Diaz-Vazquez D., Orozco-Nunnelly D.A., Yebra-Montes C., Senes-Guerrero C., Gradil-la-Hernandez M.S. Using yeast cultures to valorize tequila vinasse waste: An example of a circular bioeconomy approach in the agro-industrial sector // Biomass and Bioenergy. 2022. Vol. 161. 106471. doi: 10.1016/j.biombioe.2022.106471.
Сапунова Л.И., Кулиш С.А., Лобанок А.Г., Тамкович О.И., Ерхова Л.В., Шарейко Н.А., Разумовский Н.П., Карелин В.В. Получение и оценка эффективности применения сухой кормовой добавки «Полиэкт» в производственных условиях // Микробные биотехнологии: фундаментальные и прикладные аспекты. 2020. С. 226-243.
Coutinho J.O.P.A., Quintanilha M.F., Campos M.R.A., Ferreira E., de Menezes G.C.A., Rosa L.H., Rosa C.A., Vital K.D., Fernandes S.O.A., Cardoso V.N., Nicoli J.R., Tiago F.C.P., Martins F.S. Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 attenuates mucositis induced by 5-fluorouracil in mice // Probiotics and Antimicrobial Proteins. 2022. Vol. 14 (3). PP. 486-500. doi: 10.1007/s12602-021-09817-0.
Coutinho J.O.P.A., Peixoto T.S., de Menezes G.C.A., Carvalho C.R., Ogaki M.B., Gomes E.C.Q., Rosa C.A., Rosa L.H., Arantes R.M.E., Nicoli J.R., Tiago F.C.P., Martins F.S. In vitro and in vivo evaluation of the probiotic potential of Antarctic yeasts // Probiotics and Antimicrobial Proteins. 2021. Vol. 13 (5). PP. 1338-1354. doi: 10.1007/ s12602-021-09758-8.