The effect of growth regulators on the in vitro morphogenesis and regeneration of Syringa vulgaris cultivars | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 71. DOI: 10.17223/19988591/71/3

The effect of growth regulators on the in vitro morphogenesis and regeneration of Syringa vulgaris cultivars

The lilac (Syringa L.) is a genus of woody plants widely used in landscaping and also in perfumery, pharmacology, and other industries. Studies to optimize the technology of in vitro propagation and preservation of lilac are needed due to the existing genetic diversity of the genus members and cultivar specificity to growth regulators in nutrient media. In this research, we evaluated the micropropagation efficiency and morphometric parameters of Syringa vulgaris L. explants on media with different cytokinins and their mixes. The aim of the study was to determine the effect of plant growth regulators (6-benzylaminopurine, meta-Topolin, and thidiazuron) on the development of lilac explants at the micropropagation stage. The studies were conducted in the Laboratory of Plant Biotechnology of Tsitsin Main Botanical Garden in 2023. The shoot cultures of four ornamental cultivars of Syringa vulgaris with high regeneration potential ('Krasavitsa Moskvy', 'P.P. Konchalovskii', 'Frank Paterson', and 'Sensation') from the in vitro collection of the Laboratory were used in the research. For the cultivation of explants (about 5 mm long, containing 1-2 metamers), Murashige-Skoog media supplemented with 7 g/L agar, 30 g/L sucrose, and growth regulators 6-benzylaminopurine, meta-Topolin, and thidiazuron at concentrations of 0.5 or 1.0 mg/L were used in the experiments. Nine variants of a nutrient medium were tested (see Table 1). The comparison of the growth regulators showed the advantage of meta-Topolin over thidiazuron and the widely used 6-benzylaminopurine (See Figs. 1-3). When cultured on media with meta-Topolin, the greatest microshoot height (48.3 ± 1.6 mm vs. 35.6 ± 1.3 mm (on 6-benzylamino-purine) and 39.4 ± 1.3 mm (on thidiazuron)) and micropropogation rate (21.9 ± 0.8 vs. 8.0 ± 0.2 and 9.7 ± 0.4) of explants were observed. Meta-Topolin promoted the induction of axillary buds (79.8% vs. 27.6% and 33.2%) and the formation of several adventitious shoots per explant (2.3 ± 0.1 vs. 1.3 ± 0.1 and 1.6 ± 0.1). The results showed that the combinations of the growth regulators (6-benzylami-nopurine + meta-Topolin, 6-benzylaminopurine + thidiazuron, meta-Topolin + thidiazuron), added to the medium had a positive effect on micropropagation of the studied cultivars (See Table 2, Fig. 4). When cultured on the media supplemented with a mix of cytokinins, most studied cultivars produced the highest microshoots and developed more adventitious shoots per explant (2.3 ± 0.2 (6-benzylaminopurine + meta-Topolin), 2.2 ± 0.2 (6-benzylaminopurine + thidiazuron), 3.0 ± 0.2 (meta-Topolin + thidiazuron)). The combined use of cytokinins increased the micropropagation rate only relative to cultivation on medium with 6-benzylaminopurine and thidiazuron added separately. For instance, 'Frank Paterson' increased its micropropagaton rate from 10.1 ± 0.8 (1.0 mg/L thidiazuron) to 22.7 ± 1.1 on the medium with meta-Topolin + thidiazuron, and 'Sensation' increased it from 8.1 ± 0.3 (1.0 mg/L 6-benzylamino-purine) to 21.0 ± 2.2 on the medium with 6-benzylaminopurine + thidiazuron. We revealed the reduction of some negative effects of thidiazuron when used together with other growth regulators. For instance, 'Krasavitsa Moskvy' produced higher microshoots on the medium with the mix of phytohormones (86.0 ± 4.4 and 74.4 ± 3.9 mm), while 'P.P. Konchalovskii' increased its micropropagation rate from 8.1 ± 1.0 (0.5 mg/L thidiazuron) and 6.7 ± 0.6 (1.0 mg/L thidiazuron) to 13.0 ± 2.0 due to the addition of meta-Topolin to the medium. However, application of other cytokinins to thidiazuron in the medium could not completely prevent large callus formation in some lilac cultivars ('P.P. Konchalovskii' and 'Frank Paterson'). Since lilac micropropagation occurs mainly through the formation and further development of adventitious shoots at the base of explants, the observed formation of several shoots per explant on the tested media significantly increased the efficiency of propagation of Syringa vulgaris cultivars. During the research, we observed almost no root formation in explants on the media with meta-Topolin. Only 'Sensation' showed spontaneous rhizogenesis on the medium with 0.5 mg/L meta-Topolin (10%) and the medium with 6-benzylaminopurine + meta-Topolin (12.5%). When cultured on the media with 6-benzylaminopurine, the studied cultivars had 27.7% of rooted explants. When cultured on the media with thidiazuron, some cultivars showed root formation ('Krasavitsa Moskvy' (17.6%); 'Frank Paterson' (27.8%)), while other cultivars had callus formation at the base of explants. Application of cytokinin combinations to the medium suppressed root formation in explants; most cultivars on these media had no rooted explants. Thus, to obtain rooted microplants before adaptation and exclude a separate rooting stage, we recommend using media with low auxin content or media with low cytokinin content with the addition of auxins. To conclude, we investigated the morphometric parameters of microshoot development and morphogenesis of lilac cultivars on the media with different growth regulators and their combinations at the micropropagation stage. Therefore, we optimized the micropropagation technique for Syringa vulgaris cultivars. The article contains 4 Figures, 2 Tables, 50 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 1

Keywords

micropropagation, regeneration, benzylaminopurine, meta-Topolin, thidiazuron, Syringa vulgaris

Authors

NameOrganizationE-mail
Koroleva Olga V.Tsitsin Main Botanical Garden of Russian Academy of Scienceselaem@yandex.ru
Molkanova Olga I.Tsitsin Main Botanical Garden of Russian Academy of Sciencesmolkanova@mail.ru
Krakhmaleva Irina L.Tsitsin Main Botanical Garden of Russian Academy of Sciencesseglory@bk.ru
Orlova Nataliya D.Tsitsin Main Botanical Garden of Russian Academy of Sciencesirosvet96@mail.ru
Всего: 4

References

The World Flora Online (WFO) Plant List. Genus Syringa L. URL: https://wfoplantlist.org/taxon/wfo-4000037351-2023-12?page=1 (дата обращения 22.03.2024).
Su G, Cao Y, Li C., Yu X., Gao X., Tu P., Chai X. Phytochemical and pharmacological progress on the genus Syringa // Chemistry Central Journal. 2015. Vol. 9. 2. doi: 10.1186/ s13065-015-0079-2.
Zhu W., Wang Z., Sun Y., Yang B., Wang Q., Kuang H. Traditional uses, phytochemistry and pharmacology of genus Syringa: A comprehensive review // Journal of Ethnophar-macology. 2021. Vol. 266. 113465. doi: 10.1016/j.jep.2020.n3465.
Wozniak M., Michalak B., Wyszomierska J., Dudek M.K., Kiss A.K. Effects of phytochemically characterized extracts from Syringa vulgaris and isolated secoiridoids on mediators of inflammation in a human neutrophil model // Frontiers in pharmacology. 2018. Vol. 9. 349. doi: 10.3389/fphar.2018.00349.
Oku H., Maeda M., Kitagawa F., Ishiguro K. Effect of polyphenols from Syringa vulgaris on blood stasis syndrome // Journal of clinical biochemistry and nutrition. 2020. Vol. 67, № 1. PP. 84-88. doi: 10.3164/jcbn.20-55.
Hanganu D., Niculae M., Ielciu I., Olah N.-K., Munteanu M., Burtescu R., Stefan R., Olar L., Pall E., Andrei S., Vodnar D.C., Benedec D., Oniga I. Chemical profile, cytotoxic activity and oxidative stress reduction of different Syringa vulgaris L. // Extracts. Molecules. 2021. Vol. 26, № 11. 3104. doi: 10.3390/molecules26113104.
International Register and Checklist of cultivar names in the genus Syringa L. (Oleaceae). 2023. URL: http://www.internationallilacsociety.org/publicregister/ (дата обращения 28.02.2024).
Ткаченко К.Г, Рейнвальд В.М., Варфоломеева Е.А. Опыт зимнего зелёного черенкования коллекции сиреней в условиях защищённого грунта Ботанического сада Петра Великого // Hortus botanicus. 2023. Т 18. URL: http://hb.karelia.ru/joumal/article.php?id=8745.doi:10.15393/j4.art.2023.8745.
Charlebois D. Multiplication in vitro de Syringa vulgaris ‘Katherine Havemeyer’ et ‘Charles Joly’ // Canadian Journal of Plant Science. 2004. Vol. 84. PP. 279-289. doi: 10.4141/P02-105.
Nesterowicz S., Kulpa D., Moder K., Kurek J. Micropropagation of an old specimen of common lilac (Syringa vulgaris L.) from the dendrological garden at Przelewice // Acta Scientiarum Polonorum, Hortorum Cultus. 2006. Vol. 5, № 1. PP. 27-35.
Molkanova O., Koroleva O. Biotechological methods of Syringa L. collection propagation and preservation // In Vitro. Cellular & Developmental Biology. 2018. Vol. 54. PP. 545-546. doi: 10.1007/s11627-018-9927-9.
Gabryszewska E. Effect of various levels of sucrose, nitrogen salts and temperature on the growth and development of Syringa vulgaris L. shoots in vitro // Journal of fruit and ornamental plant research. 2011. Vol. 19. PP. 133-148.
Lyubomirova T., Iliev I. In vitro propagation of Syringa vulgaris L. // Forestry Ideas. 2013. Vol. 19, № 2 (46). PP. 173-185.
Orsolya B., Clapa D., Fira A., Harta M., Dumitras A., Pop R., Pamfil D.C. The effect of gelling agent on the micropropagation of common lilac (Syringa vulgaris L.) // Agriculture - Science and Practice. 2017. № 3-4 (103-104). PP. 63-71.
Чурикова О.А., Криницына А.А. Изучение влияния состава питательной среды и тидиазурона на реализацию морфогенетического потенциала различных сортов сирени в культуре in vitro // Бюллетень Московского общества испытателей природы. Отдел биологический. 2019. Т. 124, вып. 5. С. 55-64.
Ilczuk A., Jagiello-Kubiec K. The effect of plant growth regulators and sucrose on the micropropagation of common lilac (Syringa vulgaris L.) // Annals of Warsaw University of Life Sciences - SGGW Horticulture and Landscape Architecture. 2015. Vol. 36. PP. 3-12.
Tomsone S., Galemece A., Akere A., Priede G, Zira L. In vitro propagation of Syringa vulgaris L. cultivars // Biologija. 2007. Vol. 53, № 2. PP. 28-31.
Koroleva O.V., Molkanova O.I., Mishanova E.V. Biotechnological methods of reproduction and preservation of species and cultivars of the genus Syringa L. // Acta Horticulturae. 2022. Vol. 1339. PP. 87-92. doi: 10.17660/ActaHortic.2022.1339.12.
George E.F., Hall M.A., Klerk G.J.D. Plant growth regulators II: Cytokinins, their analogues and antagonists // Plant Propagation by Tissue Culture. Dordrecht, Netherlands : Springer Dordrecht, 2007. PP. 205-226. doi: 10.1007/978-1-4020-5005-3_6.
Phillips G.C., Garda M. Plant tissue culture media and practices: an overview // In Vitro. Cellular & Developmental Biology. Plant. 2019. Vol. 55. PP. 242-257. doi: 10.1007/ s11627-019-09983-5.
Cardoso J.C. Meta-Topolins: in vitro responses and applications in large-scale micropropagation of horticultural crops // Meta-Topolin: A growth regulator for plant biotechnology and agriculture. Singapore : Springer Singapore, 2021. PP. 203-219. doi: 10. 1007/978-981 -15-9046-7_15.
Koj E. Effects of meta-Topolin on the growth, physiological and biochemical parameters in plant tissue culture // Meta-Topolin: A growth regulator for plant biotechnology and agriculture. Singapore : Springer Singapore, 2021. PP. 265-278. doi: 10.1007/978-981-15-9046-7_19.
Bairu M.W., Stirk W.A., Dolezal K., Van Staden J. Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-Topolin and its derivatives serve as replacement for benzyladenine and zeatin? // Plant Cell, Tissue and Organ Culture. 2007. Vol. 90. PP. 15-23. doi: 10.1007/s11240-007-9233-4.
Amoo S.O., Finnie J.F., Van Staden J. The role of raeta-Topolins in alleviating micropropagation problems // Plant Growth Regulation. 2011. Vol. 63. PP. 197-206. doi: 10. 1007/s10725-010-9504-7.
Werbrouck S.P.O. Meta-Topolin and related cytokinins as a solution to some in vitro problems // Meta-Topolin: A growth regulator for plant biotechnology and agriculture. Singapore : Springer Singapore, 2021. PP. 85-91. doi: 10.1007/978-981-15-9046-7_9.
Mok M.C., Martin R.C., Dobrev P.I., Vanková R., Shing Ho P., Yonekura-Sakakibara K., Sakakibara H., Mok D.W.S. Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin o-glucosyltransferase with position specificity related to receptor recognition // Plant Physiology. 2005. Vol. 137, № 3. PP. 1057-1066. doi: 10.1104/pp.104.057174.
Doležal K., Bryksová M. Topolin metabolism and its implications for in vitro plant micropropagation // Meta-Topolin: A growth regulator for plant biotechnology and agriculture. Singapore : Springer Singapore, 2021. PP. 49-58. doi: 10.1007/978-981-15-9046-7_6.
Govindaraj S. Thidiazuron: A potent phytohormone for in vitro regeneration // Thidiazuron: From urea derivative to plant growth regulator. Singapore : Springer Singapore, 2018. PP. 393-418. doi: 10.1007/978-981-10-8004-3_22.
Guo B., Abbasi B.H., Zeb A., Xu L.L., Wei Y.H. Thidiazuron: A multi-dimensional plant growth regulator // African Journal of Biotechnology. 2011. Vol. 10, № 45. PP. 89849000. doi: 10.5897/AJB11.636.
Vinoth A., Ravindhran R. In vitro morphogenesis of woody plants using thidiazuron // Thidiazuron: From urea derivative to plant growth regulator. Singapore : Springer Singapore, 2018. PP. 211-229. doi: 10.1007/978-981-10-8004-3_10.
Набиева А.Ю. Биотехнологические приемы клонального микроразмножения перспективных сортов Syringa vulgaris L. для Западной Сибири // Вестник ИрГСХА. 2011. Т 5, № 44. С. 69-76.
Su Y.H., Liu Y.B., Zhang X.S. Auxin-cytokinin interaction regulates meristem development // Molecular Plant. 2011. Vol. 4, № 4. PP. 616-625. doi: 10.1093/mp/ssr007.
Nowakowska K., Pacholczak A., Tepper W. The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba’ // Rendiconti lincei. Scienze fisiche e naturali. 2019. Vol. 30. PP. 197-205. doi: 10.1007/s12210-019-00777-w.
Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнология на их основе. М. : ФБК-ПРЕСС, 1999. 160 с.
Молканова О.И., Васильева О.Г., Коновалова Л.Н. Научные основы сохранения и устойчивого воспроизводства генофонда растений в культуре in vitro // Вестник удмуртского университета. Серия биология. Науки о Земле. 2015. Т. 15, вып. 2. С. 95100.
Kieber J.J., Schaller G.E. Cytokinin signaling in plant development // Development. 2018. Vol. 145. 149344. doi: 10.1242/dev. 149344.
Phillips G.C. In vitro morphogenesis in plants: recent advances // In Vitro. Cellular & Developmental Biology. Plant. 2004. Vol. 40, № 4. PP. 342-345. http://wwwjstor.org/stable/4293752.
Amoo S.O., Aremu A.O., Van Staden J. In vitro plant regeneration, secondary metabolite production and antioxidant activity of micropropagated Aloe arborescens Mill. // Plant Cell, Tissue and Organ Culture. 2012. Vol. 111. PP. 345-358. doi: 10.1007/s11240-012-0200-3.
Kucharska D., Orlikowska T., Maciorowski R., Kunka M., Wojcik D., Pluta S. Application of raeta-Topolin for improving micropropagation of gooseberry (Ribes grossularia) // Scientia Horticulturae. 2020. Vol. 272. 109529. doi: 10.1016/j.scienta.2020.109529.
Manokari M., Mehta S.R., Priyadharshini S., Kumar B.M., Dulam S., Jayaprakash K., Mathiyazhagan C.R., Dey A., Rajput B.S., Shekhawat M.S. Meta-Topolin mediated improved micropropagation, foliar micro-morphological traits, biochemical profiling, and assessment of genetic fidelity in Santalum album L. // Industrial Crops and Products. 2021. Vol. 171. 113931. doi: 10.1016/j.indcrop.2021.113931.
Bairu M.W., Aremu A.O., Van Staden J. Somaclonal variation in plants: Causes and detection methods // Plant Growth Regulation. 2011. Vol. 63. PP. 147-173. doi: 10.1007/ s10725-010-9554-x.
Patel A.K., Lodha D., Shekhawat N.S. An improved micropropagation protocol for the ex situ conservation of Mitragyna parvifolia (Roxb.) Korth. (Rubiaceae): An endangered tree of pharmaceutical importance // In Vitro. Cellular & Developmental Biology. Plant. 2020. Vol. 56. PP. 817-826. doi: 10.1007/s11627-020-10089-6.
Chhajer S., Kalia R.K. Seasonal and micro-environmental factors controlling clonal propagation of mature trees of marwar teak [Tecomella undulata (Sm.) Seem] // Acta Physiologiae Plantarum. 2017. Vol. 39. 60. doi: 10.1007/s11738-017-2364-2.
Novikova T.I., Zaytseva Y.G TDZ-induced morphogenesis pathways in woody plant culture // Thidiazuron: From urea derivative to plant growth regulator. Singapore : Springer Singapore, 2018. PP. 61-94. doi: 10.1007/978-981-10-8004-3_3.
Dewir Y.H., Nurmansyah, Naidoo, Y, da Silva J.A.T. Thidiazuron-induced abnormalities in plant tissue cultures // Plant Cell Reports. 2018. Vol. 37. PP. 1451-1470. doi: 10.1007/ s00299-018-2326-1.
Pai S.R., Desai N.S. Effect of TDZ on various plant cultures // Thidiazuron: From urea derivative to plant growth regulator. Singapore : Springer Singapore, 2018. PP. 439-454. doi: 10.1007/978-981-10-8004-3_25.
Van Staden J., Zazimalova E., George E.F. Plant growth regulators II: Cytokinins, their analogues and antagonists // Plant propagation by tissue culture: Vol. 1. The Background. Dordrecht, Netherlands : Springer, 2008. PP. 205-226. doi: 10.1007/978-1-4020-5005-3_6.
Guariniello J., Iannicelli J., Peralta P.A., Escandón A.S. In vivo and in vitro propagation of “macela”: A medicinal-aromatic native plant with ornamental potential // Ornamental Horticulture. 2018. Vol. 24, № 4. PP. 361-370. doi: 10.14295/oh.v24i4.1238.
Dewir Y.H., Nurmansyah, Naidoo, Y., da Silva J.A.T. Thidiazuron-induced abnormalities in plant tissue cultures // Plant Cell Reports. 2018. Vol. 37. PP. 1451-1470. doi: 10.1007/s0029-018-2326-1.
Bettoni J.C., Wang M.-R., Wang Q.-C. In vitro regeneration, micropropagation and germplasm conservation of horticultural plants // Horticulturae. 2024. Vol. 10, № 1. 45. doi: 10.3390/horticulturae10010045.
 The effect of growth regulators on the <i>in vitro</i> morphogenesis and regeneration of <i>Syringa vulgaris</i> cultivars | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. №  71. DOI: 10.17223/19988591/71/3

The effect of growth regulators on the in vitro morphogenesis and regeneration of Syringa vulgaris cultivars | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 71. DOI: 10.17223/19988591/71/3

Download full-text version
Counter downloads: 173