Microplastics in reptiles: Assessment of particle content in viviparous and sand lizard populations (Zootoca vivipara, Lacerta agilis, Lacertidae) and common adder (Vipera berus, Viperidae) from Western Siberia | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 71. DOI: 10.17223/19988591/71/11

Microplastics in reptiles: Assessment of particle content in viviparous and sand lizard populations (Zootoca vivipara, Lacerta agilis, Lacertidae) and common adder (Vipera berus, Viperidae) from Western Siberia

The paper presents the results of quantitative assessment of the content and morphological characterization of microplastics (MPs) accumulated in the organs of adult individuals (n = 43) from three reptile species: the viviparous lizard Zootoca vivipara Lichtenstein, 1823, the sand lizard Lacerta agilis Linnaeus, 1758, and the common adder Vipera berus Linnaeus, 1758. The species inhabit overlapping ranges, are often syntopic, and exhibit zoophagous behavior. The studied individuals were collected in the spring-summer period of 2021-2023 from various localities in Tomsk Oblast (southeast of Western Siberia). MPs in the size range of 0.15-5 mm were detected in the gastrointestinal tract (GIT) of both lizard species (100%), as well as in the GIT and skin of V. berus. The maximum average MP content in the GIT was 6.80 ± 11.4, with a range of 0 to 32 particles in Z. vivipara collected in 2022. Interannual variations were noted in the contamination level of Z. vivipara: the average MP content in the GIT was 3.2-fold lower in 2023 versus 2022. The differences in MP content between Z. vivipara and L. agilis were not statistically significant (p > 0.05), as were the differences in MP content between the GIT and the skin of V. berus. In the GIT of adult individuals of the three species, MPs were represented by microspheres, microfilms, irregularly shaped fragments, with microfibers being predominant, comprising 64.5% in Z. vivipara and 82.0% in L. agilis, respectively. The study revealed the prevalence of MPs with sizes ranging from 0.3 to 1 mm, with the exception of Z. vivipara, where most particles did not exceed 300 μm (43.5%). The proportion of larger particles (> 3 mm) in the organs of V. berus was higher compared to Z. vivipara and L. agilis. MP detection in the GIT and skin of adult individuals indicates plastic pollution in the taiga zone of Western Siberia. The data obtained represent the first evidence of the presence of MPs in Palearctic reptiles in Russia. The article contains 2 Figures, 1 Table, 40 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 2

Keywords

microplastics, reptiles, bioindication, Western Siberia

Authors

NameOrganizationE-mail
Kuranova Valentina N.Tomsk State Universitykuranova49@mail.ru
Zaiko Aleksandra V.Tomsk State Universityaleksandrazaiko2003@icloud.com
Frank Yulia A.Tomsk State Universityyulia.a.frank@gmail.com
Всего: 3

References

Thompson R.C., Olsen Y., Mitchell R.P., Davis F., Rowland S., John A., Mcgonigle D.F., Russellet A. Lost at sea: Where is all the plastic? Science. 2004;304:838. doi: 10.1126/ science.1094559.
Geilfusa N.X., Munsona K.M., Sousab J., Germanova Y., Bhugaloo S., Babb D., Wang F. Distribution and impacts of microplastic incorporation within sea ice. Marine Pollution Bulletin. 2019;145:463-473. doi: 10.1016/j.marpolbul.2019.06.029.
Periyasamy A.P., Tehrani-Bagha A. A review on microplastic emission from textile materials and its reduction techniques. Polymer Degradation and Stability. 2022;199:109901. doi: 10.1016/j.polymdegradstab.2022.1099.
Wu P., Huang J., Zheng Y., Yang Y., Zhang Y., He F., Chen H., Quan G., Yan J., Li T., Gao B. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicology and Environmental Safety. 2019;184:109612. doi: 10.1016/j.ecoenv.2019.109612.
Duncan E.M., Arrowsmith J., Bain C., Broderick A.C., Lee J., Metcalfe K., Godley B.J. The true depth of the Mediterranean plastic problem: Extreme microplastic pollution on marine turtle nesting beaches in Cyprus. Marine Pollution Bulletin. 2018;136:334-340. doi: 10.1016/j.marpolbul.2018.09.019.
Sighicelli M., Pietrelli L., Lecce F., Iannilli V., Falconieri M., Coscia L., Di Vito S., Nuglio S. and Zampetti G. Microplastic pollution in the surface waters of Italian subalpine lakes. Environmental Pollution. 2018;236:645-651. doi:10.1016/j.envpol.2018.02.008.
Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F. A detailed review study on potential effects of microplastics and additives of concern on human health.International Journal of Environmental Research and Public Health. 2020;17(4):1212. doi: 10. 3390/ijerph17041212.
Strine C.T., Silva I., Crane M., Nadolski B., Artchawakom T., Goode M., Suwanwaree P. Mortality of a wild King Cobra, Ophiophagus Hannah cantor, 1836 (Serpentes: Elapidae) from northeast Thailand after ingesting a plastic bag. Asian Herpetological Research. 2014;5:284-286. doi: 10.3724/SP.J.1245.2014.00284.
Sindha P., Vyas R., Mistry V. Entanglement in fishing nets: Deaths of Indian Rock Pythons (Python molurus). RCF Reptiles Amphibians. 2020;26:248-249. doi: 10.17161/ randa.v26i3.14427.
Gregory M.R. Environmental implications of plastic debris in marine settings-entanglement, ingestion, smothering, hangerson, hitchhiking and alien invasions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364:2013-2025. doi: 10. 1098/rstb.2008.026.
Casale P., Affronte M., Insacco G., Freggi D., Vallini C., Pino d'Astore P., Basso R., Paolillo G., Abbate G., Argano R. Sea turtle strandings reveal high anthropogenic mortality in Italian waters. Aquatic Conservation. 2010;20:611-620. doi: 10.1002/aqc.1133.
Mullera C., Townsendb K., Matschullat J. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles. Science of the Total Environment. 2012;416:464-467. doi: 10.1016/j. scitotenv.2011.10.069.
Beckwith V.K., Fuentes M.M.P.B. Microplastic at nesting grounds used by the northern Gulf of Mexico loggerhead recovery unit. Marine Pollution Bulletin. 2018;131:32-37. doi: 10.1016/j.marpolbul.2018.04.001.
Mam N., Jusup M., Kooijman S.A.L.M., Klanjscek T. Quantifying impacts of plastic debris on marine wildlife identifies ecological breakpoints. Ecology Letters. 2020;23:1479-1487. doi: 10.1111/ele.13574.
Costello L., Zetterstrom A., Gardner P., Crespo-Picazo J.L., Bussy C., Kane I., Shiels H.A. Microplastics accumulate in all major organs of the mediterranean loggerhead sea turtle (Caretta caretta). Marine Environmental Research. 2025;208:107100. doi: 10.1016/j. marenvres.2025.107100.
Gonzalez-Jauregui M., Borges-Ramirez M., Barao-Nobrega J.A.L., Escamilla A., Dzul-Caamal R., Osten J.R. Stomach flushing technique applied to quantify microplastics in Crocodilians. MethodsX. 2019;6:2677-2685. doi: 10.1016/j.mex.2019.11.013.
Hou D.M., Rao D.Q. Microplastics: Their effects on Amphibians and Reptiles-A review. Pakistan Journal of Zoology. 2022;54(6):2931-2951. doi: 10.17582/journal.pjz/202108 20080823.
Altunışık A., Yıldız M.Z., Tatlı H.H. Microplastic accumulation in a lizard species: Observations from the terrestrial environments. Environmental Pollution. 2024;359:1-10. doi: 10.1016/j.envpol.2024.124754.
Dursun С., Candan K., Karaoğlu K., Ilgaz C., Kumlutaş Y., Elif Yıldırım Caynak E.Y., Gul S. Microplastic accumulation in snakeeyed lizard (Ophisops elegans Menetries, 1832) after long-term monitoring: habitats matter, not years. Environmental Sciences Europe. 2025;37(8):1-10. doi: 10.1186/s12302-024-01042-0.
Kuranova V.N., Yartsev V.V. Bioraznoobrazie Tomskogo Priob'ya. Zemnovodnye i presmykayushchiesya: uchebnoe posobie [Biodiversity of the Tomsk Ob Region. Amphibians and reptiles: A textbook]. Tomsk: Tomsk State University Publ.; 2020. 148 p. In Russian.
Kuranova V.N., Yakovlev V.A. Places, times and wintering conditions of the viviparous lizard Zootoca vivipara (Lichtenstein, 1823) (Sauria: Lacertidae) in Western Siberia. Current Studies in Herpetology. 2025;25(1-2):37-52. In Russian, English summary. doi: 10.18500/1814-6090-2025-25-1-2-37-52.
Vorobiev D.S., Frank Y.A., Rakhmatullina S.N., Vorobiev E.D., Poskrebysheva Y.R., Oladele O., Trifonov A.A. Microplastic ingestion by fish with different feeding habits in the Ob and Yenisei Rivers. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya -Tomsk State University Journal of Biology. 2024;66:252-266. In Russian, English summary. doi: 10.17223/19988591/66/13.
Lusher A.L., Brate I.L.N., Munno K., Hurley R.R., Welden N.A. Is it or isn’t it: The importance of visual classification in microplastic characterization. Applied Spectroscopy. 2020;74:1139-1153. doi: 10.1177/0003702820930733.
Lusher A.L., Welden N.A., Sobral P., Cole M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods. 2017;9:1346-1360. doi: 10.1039/C6AY02415G.
Kuranova V.N., Frank Y.A., Rakhmatullina S.N., Epova L.A. Accumulation of microplastics by the Siberian frog Rana amurensis (Anura, Amphibia) in the West Baikal region. Inland Water Biology. 2024;17:345-353. doi: 10.1134/S1995082924020081.
Kuranova V.N. Osobennosti aktivnosti i povedeniya dvukh blizkorodstvennykh vidov latsertid - zhivorodyashchey (Zootoca vivipara) i prytkoy (Lacerta agilis) yashcherits . In: Polevyye i eksperimental'nyye issledovaniya nazemnykh pozvonochnykh: uchebno-metodicheskoye posobiye dlya biologicheskikh spetsial'nostey vuzov . Tomsk: Izdatelskij dom TSU; 2019. pp. 42-53. In Russian.
Batool I., Qadir A., Levermore J.M., Kelly F.J. Dynamics of airborne microplastics, appraisal and distributional behaviour in atmosphere: A review. Science of the Total Environment. 2022;806:150745. doi: 10.1016/j.scitotenv.2021.15074529.
Frank Y.A., Tatsii D., Rednikin A.R., Plach A., Rakhmatullina S.N., Vorobiev D.S., Stoh A. It is snowing microplastics in Western Siberia. Environmental Pollution. 2025; 364(Pt.1):125293. doi: 10.1016/j.envpol.2024.125293.
Frank Y., Ershova A., Batasheva S., Vorobiev E., Rakhmatullina S., Vorobiev D., Fakhrullin R. Microplastics in freshwater: A focus on the Russian inland waters. Water. 2022;14(23):3909. doi: 10.3390/w14233909.
Merzlyakov O.E., Ruchkina K.V. Mikroplastik v pochvakh: razrabotka metodov obnaruzheniya na primere sel'skokhozyaystvennykh pochv Zapadnoy Sibiri . In: Trudy I Vserossiyskoy konferentsii s mezhdunarodnym uchastiyem po zagryazneniyu okruzhayushchey sredy mikroplastikom "Mikroplastik Okruzhayushchaya sreda-2022” (MPE-2022). . Tomsk: Tomsk State University Publ.; 2022. pp. 91-94. In Russian.
Ruchkina K.V., Merzlyakov O.E. Morfologicheskiye khrakteristiki mikroplastika v agropochvakh tayezhnolesnoy i stepnoy zony Zapadnoy Sibiri . In: II Nikitinskiye chteniya "Aktual'nyye problemy pochvovedeniya, agrokhimii i ekologii v prirodnykh i antropogennykh landshaftakh". Materialy nauch. konf. . Perm; 2023. pp. 531-535. In Russian.
Rillig M., Ziersch L., Hempel S. Microplastic transport in soil by earthworms. Scientific Reports. 2017;7:1362. doi: 10.1038/s41598-017-01594-7.
Anderson J.M. Invertebrate-mediated transport processes in soils Agriculture. Ecosystems & Environment. 1998;24:5-19. doi: 10.1016/0167-8809(88)90052-7.
Li J.Y., Yu Y., Craig N.J., He W., Su L. Interactions between microplastics and insects in terrestrial ecosystems-A systematic review and meta-analysis. Journal of Hazardous Materials. 2024;462:132783. doi: 10.1016/j.jhazmat.2023.132783.
Simakova A.V., Varenitsina А.А., Babkina I.B., Andreeva Y.V., Frank Y.A. Ontogenetic transfer of microplastics in natural populations of malaria mosquitoes in Western Siberia. Entomologia Experimentalis et Applicata. 2024;172(11):1046-1053. doi: 10.1111/eea. 13509.
Hosseini F.S., Asoodeh A., Ostad Movahed S., Makhdoumi A. An integrated approach for plastic polymer degradation by the gut bacterial resident of superworm, Zophobas morio (Coleoptera: Tenebrionidae). Environmental Science and Pollution Research. 2024;31: 60359-60370. doi: 10.1007/s11356-024-35244-z.
Windsor F.M., Tilley R.M., Tyler C.R., Ormerod S.J. Microplastic ingestion by riverine macroinvertebrates. Science of the Total Environment. 2019;646:68-74. doi: 10.1016/j. scitotenv.2018.07.271.
Rani-Borges B., Arena M.V.N., Gomes I.N., Lins L.H.F.C., Cestaro L.S.C., Pompeo M., Ando R.A., Alves-Dos-Santos I., Toppa R.H., Martines M.R., Queiroz L.G. More than just sweet: Current insights into microplastics in honey products and a case study of Melipona quadrifasciata honey. Environmental Science: Processes & Impacts. 2024; 26(12):2132-2144. doi: 10.1039/d4em00262h.
Polyakova M.M. Soderzhanie mikroplastika v zheludochno-kishechnom trakte polevoj myshi i polevki - ekonomki g. Tomska i ego okrestnostej . In: Materialy LXIII studencheskoj konferencii Biologicheskogo instituta "Start v nauku" . Tomsk: TSU; 2024. p. 32. In Russian.
Shevchenko K.A. Soderzhanie mikroplastika v zheludochno-kishechnom trakte lesnyh polevok g. Tomska i ego okrestnostej [Microplastic content in the gastrointestinal tract of forest voles in Tomsk and its environs]. In: Materialy LXIII studencheskoj konferencii Biologicheskogo instituta "Start v nauku " [Proceedings of the LXXIII student conference of the Biological Institute "Start in Science" (Tomsk, Russia, 22-26 April, 2024)]. Tomsk: TSU; 2024. p. 39. In Russian.
 Microplastics in reptiles: Assessment of particle content in viviparous and sand lizard populations (<i>Zootoca vivipara</i>, <i>Lacerta agilis</i>, Lacertidae) and common adder (<i>Vipera berus</i>, Viperidae) from Western Siberia | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. №  71. DOI: 10.17223/19988591/71/11

Microplastics in reptiles: Assessment of particle content in viviparous and sand lizard populations (Zootoca vivipara, Lacerta agilis, Lacertidae) and common adder (Vipera berus, Viperidae) from Western Siberia | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 71. DOI: 10.17223/19988591/71/11

Download full-text version
Counter downloads: 173