Genome characterization of a Stutzerimonas stutzeri strain isolated from oil-contaminated soil in Tatarstan | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 71. DOI: 10.17223/19988591/71/12

Genome characterization of a Stutzerimonas stutzeri strain isolated from oil-contaminated soil in Tatarstan

Oil spills resulting from anthropogenic activities such as extraction, transportation or storage of petroleum products cause serious harm to the biosphere and are potentially hazardous to human health. Bioremediation using microorganisms is a promising technology for cleaning up such contaminated sites, since it is cost-effective and leads to complete mineralization of harmful compounds. The discovery of new local microbial strains capable of effective oil biodegradation provides prospects for the development of a reliable and cost-effective strategy for the reclamation of oil-contaminated soils. This study presents data on the determination and analysis of the complete genome nucleotide sequence of the DIA-8 strain, which was isolated from oil-contaminated soil in the Republic of Tatarstan. Yellow, shiny, convex colonies with irregular edges, ranging from 0.5 to 3 mm in diameter, were observed when the S. stutzeri DIA-8 strain was cultured on dense LB nutrient agar (See Fig. 1). Stutzerimonas stutzeri is a non-fluorescent, denitrifying bacterium widely distributed in the environment. This bacterial species has attracted significant attention due to its unique metabolic properties, including denitrification, nitrogen fixation, and the degradation of aromatic compounds, and its resistance to metals and potential applications in bioremediation. Analysis of this strain’s genome contributes to a better understanding of the genetic basis of oil degradation, the production of secondary metabolites, potential virulence, and other important physiological functions. Furthermore, the findings of this study may serve as the basis for the development of a cost-effective and environmentally friendly method for the remediation of crude oil-contaminated soils. Genomic DNA was extracted using the ExtractDNA Blood & Cells kit (CJSC Eurogen, Russia). Sequencing was performed on a MiSeq genetic analyzer (Illumina, USA) in paired-end mode (2x300 bp). The MiSeq Reagent Kit v3 was used for sequencing. De novo genome assembly was performed using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) v3.6.2 (https://www.bv-brc.org). Digital DNA-DNA hybridization (dDDH) was calculated using the GGDC v3.0 genome distance calculator (http://ggdc.dsmz.de/distcalc2.php). Average Nucleotide Identity (ANI) values were calculated using the JSpeciesWS online service. A phylogenetic tree based on whole-genome data was constructed using the TYGS web server (https://tygs.dsmz.de). Functional genome annotation was performed using the RAST 2.0 server (https://rast.nmpdr.org) with default settings. The PathogenFinder web server (https://cge.food.dtu.dk/services/PathogenFinder/) and the Virulence Factor Database (VFDB) were used for the prediction of bacterial pathogenicity. Plasmid DNA was isolated using a LumiSpin® PLASMID kit (Lumiprob RUS LLC, Russia&EAEU). Plasmid DNA sequencing was performed by the biotechnology company Cloning Facility (Moscow) using Nanopore technology. The assembled genome of S. stutzeri strain DIA-8 consisted of 28 contigs (> 500 bp) with an N50 of 648,363 bp and a total length of 4,496,503 bp. ANI and dDDH results between S. stutzeri DIA-8 and other S. stutzeri species showed genome similarity values ranging from 97.31% to 97.90% for ANI and from 80.60% to 85.60% for dDDH (See Table 1). These values are above the recommended threshold values of 95% (ANI) and 70% (dDDH) for prokaryotic species delineation, respectively. The TYGS results showed that the DIA-8 strain branch clustered within the S. stutzeri species clade. This indicates that the DIA-8 strain belongs to the S. stutzeri species (See Fig. 2). During the mapping of the complete genome nucleotide sequence, we identified several genes encoding proteins responsible for the catabolism of aromatic compounds. According to RAST server annotation, the S. stutzeri DIA-8 genome contains 60 genes involved in aromatic compound metabolism (See Fig. 3), with 31 genes involved in peripheral pathways and 27 genes involved in the central pathways of aromatic compound catabolism. Aromatic ring cleavage enzymes identified in DIA-8 included benzoate-1,2-dioxygenase (EC 1.14.12.10), 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase (EC 1.3.1.25), catechol-1,2-dioxygenase (EC 1.13.11.1), muconate cycloisomerase (EC 5.5.1.1), muconolactone Δ-isomerase (EC 5.3.3.4), 3-oxoadipateenol-lactonase (EC 3.1.1.24), 3-oxoadipate-CoA transferase (EC 2.8.3.6), and 3-oxoadipyl-CoA thiolase (EC 2.3.1.174) (See Fig. 4). Bioinformatic analysis of the S. stutzeri DIA-8 genome sequence also revealed genes involved in the synthesis of glycolipid biosurfactants and heavy metal resistance. The genome analysis indicated that this strain has a low pathogenic potential, similar to other nonvirulent environmental isolates of the genus Pseudomonas, which suggests its potential use as a biotechnological product. Sequencing of the isolated plasmid DNA sample revealed that it is a mixture of two plasmids. One plasmid was 15,416 bp in size and contained 20 protein-coding genes and one gene encoding a non-coding RNA molecule (PrrB/RsmZ). The genes on this plasmid, identified through annotation, are responsible for replication and plasmid transfer between bacterial cells. The second plasmid was 2,450 bp in size and contained three genes encoding proteins of unknown function. Based on our genomic analysis, Stutzerimonas stutzeri DIA-8, isolated from oil-contaminated soil in the Republic of Tatarstan, shows promise for the development of bioremediation agents for polluted ecosystems. The strain’s genome contains genes that play a crucial role in the degradation of hydrocarbon compounds. The obtained results will contribute to further research of the physiological properties of the strain and its potential for restoring the productivity of disturbed lands. The complete genome nucleotide sequence has been deposited in the international GenBank database under accession number GCA_037081755.1. The article contains 4 Figures, 1 Table, 36 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 1

Keywords

genome-wide sequencing, catechol-1,2-dioxygenase, bioremediation, Stutzerimonas stutzeri

Authors

NameOrganizationE-mail
Babynin Eduard V.Kazan (Volga Region) Federal University; Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences"edward.b67@mail.ru
Tsarkova Yulia R.Kazan (Volga Region) Federal Universityju.gusmanova@yandex.ru
Degtyareva Irina A.Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences"peace-1963@mail.ru
Всего: 3

References

Wang J., Gao P., Pan X.L., Fan K.Y., Li Y., Gao Y.F., Gao Y. An aerobic denitrifier Pseudomonas stutzeri Y23 from an oil reservoir and its heterotrophic denitrification performance in laboratory-scale sequencing batch reactors // International Biodeterioration & Biodegradation. 2022. Vol. 174. 105471. doi: 10.1016/j. ibiod.2022.105471.
Chen S., Han X., Xie S., Yang Y., Jing X., Luan T. Extracellular electron transfer drives ATP synthesis for nitrogen fixation by Pseudomonas stutzeri // Electrochemistry Communications. 2023. Vol. 154. 107562. doi: 10.1016/j.elecom.2023.107562.
Brown L.M., Gunasekera T.S., Ruiz O.N. Draft genome sequence of Pseudomonas stutzeri strain 19, an isolate capable of efficient degradation of aromatic hydrocarbons // Genome Announcements. 2017. Vol. 5 (49). e01373-17. doi: 10.1128/genomeA.01113-14.
Chakraborty R., Woo H., Dehal P., Walker R., Zemla M., Auer M.Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a hexavalent chromium [Cr(VI)] contaminated site // Standards in Genomic Sciences. 2017. Vol. 12. PP. 1-9. doi: 10.1186/s40793-017-0233-7.
Zheng R., Wu S., Ma N., Sun C. Genetic and physiological adaptations of marine bacterium Pseudomonas stutzeri 273 to mercury stress // Frontiers in Microbiology. 2018. Vol. 9. 682. doi: 10.3389/fmicb.2018.00682.
Burri R., Stutzer A. Ueber Nitrat zerstorende Bakterien und den durch dieselben bedingten Stickstoffverlust // Zentralblatt fur Bakteriologie. Abt. II. 1895. Vol. 1. PP. 257-265.
Lehman K.B., Neumann O.R. Atlas und Grundriss der Bakteriologie und Lehrbuch der speziellen bakteriologischen Diagnostik. Munchen : J.F. Lehman, 1896. 448 p. doi: 10. 5962/bhl.title. 117384.
Van Niel C.B., Allen M.B. A note on Pseudomonas stutzeri // Journal of Bacteriology. 1952. Vol. 64 (3). PP. 413-422. doi: 10.1128/jb.64.3.413-422.1952.
Lalucat J., Gomila M., Mulet M., Zaruma A., Garda-Valdes E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen nov. // Systematic and Applied Microbiology. 2022. Vol. 45. 126289. doi: 10.1016/j.syapm.2021. 126289.
Gomila M., Mulet M., Garda-Valdes E., Lalucat J. Genome-based taxonomy of the genus Stutzerimonas and proposal of S. frequens sp. nov. and S. degradans sp. nov. and emended descriptions of S. perfectomarina and S. chloritidismutans // Microorganisms. 2022. Vol. 10. 1363. doi: 10.3390/microorganisms10071363.
Дегтярева И.А., Бабынин Э.В., Мотина Т.Ю., Султанов М.И. Полногеномное секвенирование штамма Staphylococcus warneri, изолированного из загрязненной нефтью почвы // Известия вузов. Прикладная химия и биотехнология. 2020. Т. 10, № 1. С. 48-55. doi: 10.21285/2227-2925-2020-10-1-48-55.
Jahangi G.Z., Arshad Q.A., Shah A., Younas A., Naz S., Ali Q. BioFertilizing efficiency of phosphate solubilizing bacteria in natural environment: A trial field study on stress tolerant potato (Solanum tuberosum L.) // Applied Ecology and Environmental Research. 2019. Vol. 17. PP. 10845-10859. doi: 10.15666/aeer/1705_1084510859.
Meignanalakshmi S., Charulatha M., Vijayarani K. A preliminary study to evaluate S. warneri MF612183 isolated from tannery effluent for bioremediation of heavy metals // Indian Journal of Pure & Applied Biosciences. 2018. Vol. 6. PP. 1347-1351. doi: 10. 18782/2320-7051.6280.
Mohsen L.Y., Jarallah E.M., Al-mamoori A.M.J. Screening and characterization of biosurfactant-producing bacteria isolated from oil-contaminated soil // Journal of Pharmaceutical Negative Results. 2022. Vol. 13. PP. 1325-1331. doi: 10.47750/pnr.2022.13. S08.164.
Olson R.D., Assaf R., Brettin T., Conrad N., Cucinell C., Davis J.J.Introducing the bacterial and viral bioinformatics resource center (BV-BRC): A resource combining PATRIC, IRD and ViPR // Nucleic Acids Research. 2023. Vol. 51. PP. D678-D689. doi: 10.1093/nar/gkac1003.
Parks D.H., Imelfort M., Skennerton C.T., Hugenholtz P., Tyson G.W. Check M: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes // Genome Biology. 2015. Vol. 25. PP. 1043-1055. doi: 10.1101/gr.186072.114.
Liu D., Zhang Y., Fan G., Sun D., Zhang X., Yu Z., Wang J., Wu L., Shi W., Ma J. IPGA: A handy integrated prokaryotes genome and pan-genome analysis web service // iMeta. 2022. Vol. 1 (4). e55. doi: 10.1002/imt2.55.
Ondov B.D., Treangen T.J., Melsted P., Mallonee A.B., Bergman N.H., Koren S., Phillippy A.M. Mash: Fast genome and metagenome distance estimation using MinHash // Genome Biology. 2016. Vol. 17. PP. 132-145. doi: 10.1186/s13059-016-0997-x.
Meier-Kolthoff J.P., Sarda Carbasse J., Peinado-Olarte R.L., Goker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes // Nucleic Acids Research. 2022. Vol. 50. PP. D801-D807. doi: 10.1093/ nar/gkab902.
Richter M., Rossello-Mora R., Glockner F.O., Peplies J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison // Bioinformatics. 2016. Vol. 32. PP. 929-931. doi: 10.1093/bioinformatics/btv681.
Letunic I., Bork P.Interactive tree of life (iTOL) v4: Recent updates and new developments // Nucleic Acids Research. 2019. Vol. 47. PP. W256-W259. doi: 10.1093/ nar/gkz239.
Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., R Edwards A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: Rapid annotations using subsystems technology // BMC Genomics. 2008. Vol. 9. PP. 1-15. doi: 10.1186/1471-2164-9-75.
Cosentino S., Voldby Larsen M., Moller Aarestrup F., Lund O. PathogenFinder - Distinguishing friend from foe using bacterial whole genome sequence data // PLoS ONE. 2013. Vol. 8. e77302. doi: 10.1371/journal.pone.0077302.
Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface // Nucleic Acids Research. 2019. Vol. 47 (D1). PP. D687-D692. doi: 10.1093/nar/gky1080.
Chun J., Oren A., Ventosa A., Christensen H., Arahal D.R., da Costa M.S., Rooney A.P., Yi H., Xu X.W., De Meyer S., Trujillo M.E. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes // The International Journal of Systematic and Evolutionary Microbiology. 2018. Vol. 68. PP. 461-466. doi: 10.1099/ijsem.0. 002516.
Lalucat J., Bennasar A., Bosch R., Garda-Valdes E., Palleroni N. J. Biology of Pseudomonas stutzeri // Molecular Biology Reviews. 2006. Vol. 70. PP. 510-547. doi: 10.1128/ MMBR.00047-05.
Ladino-Orjuela G., Gomes E., da Silva R., Salt C., Parsons J.R. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria // Reviews of Environmental Contamination and Toxicology. 2016. Vol. 237. PP. 105-121. doi: 10.1007/978-3-319-23573-8_5.
Rodríguez-Salazar J., Almeida-Juarez A.G., Ornelas-Ocampo K., Millán-López S., Raga-Carbajal E., Rodríguez-Mejía J.L., Muriel-Millán L.F., Godoy-Lozano E.E., Rivera-Gómez N., Rudiño-Piñera E., Pardo-López L. Characterization of a novel functional trimeric catechol 1,2-dioxygenase from a Pseudomonas stutzeri isolated from the Gulf of Mexico // Frontiers in Microbiology. 2020. Vol. 4. 1100. doi: 10.3389/fmicb.2020.01100.
Pardhi D.S., Panchal R.R., Raval V.H., Joshi R.G., Poczai P., Almalki W.H., Rajput K.N. Microbial surfactants: A journey from fundamentals to recent advances // Frontiers in Microbiology. 2022. Vol. 4. 982603. doi: 10.3389/fmicb.2022.982603.
Singh D.N., Tripathi A.K. Coal induced production of a rhamnolipid biosurfactant by Pseudomonas stutzeri, isolated from the formation water of Jharia coalbed // Bioresource Technology. 2013. Vol. 128. PP. 215-221. doi: 10.1016/j.biortech.2012.10.127.
Anbu P., Kang C-H, Shin Y-J., So J-S. Formations of calcium carbonate minerals by bacteria and its multiple applications // SpringerPlus. 2016. Vol. 5. 250. doi: 10.1186/ s40064-016-1869-2.
Regenhardt D., Heuer H., Heim S., Fernandez D.U., Strompl C., Moore E.R., Timmis K.N. Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440 // Environmental Microbiology. 2002. Vol. 4 (12). PP. 912-915. doi: 10.1046/j.1462-2920.2002. 00368.x.
Qin S., Xiao W., Zhou C., Pu Q., Deng X., Lan L., Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics // Signal Transduction and Targeted Therapy. 2022. Vol. 7 (1). 199. doi: 10.1038/s41392-022-01056-1.
Moradali M.F., Ghods S., Rehm B.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence // Frontiers in Cellular and Infection Microbiology. 2017. Vol. 7. 39. doi: 10.3389/fcimb.2017.00039.
Ligthart K., Belzer C., de Vos W.M., Tytgat H.L.P. Bridging bacteria and the gut: Functional aspects of type IV pili // Trends in Microbiology. 2020. Vol. 28 (5). PP. 340-348. doi: 10.1016/j.tim.2020.02.003.
Singh P.K., Little J., Donnenberg M.S. Landmark discoveries and recent advances in type IV pilus research // Microbiology and Molecular Biology Reviews. 2022. Vol. 86 (3). e0007622. doi: 10.1128/mmbr.00076-22.
 Genome characterization of a <i>Stutzerimonas stutzeri</i> strain isolated from oil-contaminated soil in Tatarstan | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. №  71. DOI: 10.17223/19988591/71/12

Genome characterization of a Stutzerimonas stutzeri strain isolated from oil-contaminated soil in Tatarstan | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 71. DOI: 10.17223/19988591/71/12

Download full-text version
Counter downloads: 173