Physiological response of pear cultivars to short-term high temperature stress | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 72. DOI: 10.17223/19988591/72/11

Physiological response of pear cultivars to short-term high temperature stress

To optimize and improve fruit crop breeding, it is essential to identify cultivars with high adaptive and productive potential. In summer, the climatic conditions of the Krasnodar Krai are characterized by insufficient and uneven precipitation, along with high air temperatures, which have been observed almost annually in recent years. In this study, our objective was to detect differences among four pear (Pyrus sp. L.) cultivars under moderate heat stress by analyzing physiological parameters. Pear trees were planted under identical cultivation practices and environmental conditions at the experimental orchard in the Krasnodar Krai (45°16'N, 38°93'E). Pear leaves were exposed to 40°C for 3 hours in a climatic chamber, after which physiological parameters were assessed. It was found that the studied cultivars are resistant to shortterm heat treatment, as indicated by low levels of malondialdehyde (16.2-37.5 nmol g-1 fresh weight), a marker of lipid peroxidation in plant cells. However, the cultivars exhibited different stress responses. The Russian cultivar Krasnodarskaya Letnyaya showed the highest levels of peroxidase activity (25.5-41.8 unit mg-1 protein min-1) and polyphenol oxidase activity (3.9 unit mg-1 protein) under stress conditions, as well as the greatest number of peroxidase isoforms (9-10 bands) compared with the Russian cultivar Leven and the American cultivars Kieffer and Devo. The total phenol content increased on average from 20.7 to 22.5 mg g-1 fresh weight across all pear cultivars, with the highest values observed in Krasnodarskaya Letnyaya under stress. Based on these results, we conclude that Krasnodarskaya Letnyaya possesses a broader range of protective physiological features, indicating its high adaptive potential. It is also likely that under prolonged high-temperature stress conditions, this cultivar will maintain a high level of resistance. The article contains 41 References. the authors thank the reviewers for their contribution to the peer review of this work. The Authors declare no conflict of interest.

Download file
Counter downloads: 5

Keywords

Pyrus, heat stress, photosynthetic pigments, antioxidant system defence, oxidative stress

Authors

NameOrganizationE-mail
Mishko Alisa E.North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-makingmishko-alisa@mail.ru
Klukina Anna V.North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-makinganna.klyukina.95@list.ru
Mozhar Nina V.North Caucasian Federal Scientific Center of Horticulture, Viticulture, Wine-makingmozhar49@mail.ru
Miftakhova Snezhana R.N.I. Vavilov All-Russian Institute of Plant Genetic Resourcesurmanchy@yandex.ru
Всего: 4

References

Mishko A.E., Lutskiy E.O. Dynamics in the activity of peroxidase and its isoforms in leaves of different apple cultivars. Proceedings on Applied Botany, Genetics and Breeding. 2021;182(3):37-43. In Russian, English summary. doi: 10.30901/2227-8834-2021-3-37-43.
Lin S, Li Y, Zhao J, Guo W, Jiang M, Li X, Liu W, Zhang J, Yang M. Transcriptome analysis of biochemistry responses to low-temperature stress in the flower organs of five pear varieties. Forests. 2023;14:490. doi: 10.3390/f14030490.
Morales M.M., Munne-Bosch S. Malondialdehyde: facts and artifacts. Plant Physiology. 2019;180:1246-1250. doi: 10.1104/pp.19.00405.
Asayesh Z.M., Arzani K., Mokhtassi-Bidgoli A., Abdollahi H. Enzymatic and nonenzymatic response of grafted and ungrafted young European pear (Pyrus communis L.) trees to drought stress. Scientia Horticulturae. 2023;310:111745. doi: 10.1016/j.scienta. 2022.111745.
Hasanuzzaman M., Bhuyan B.M., Zulfiqar F., Raza A., Mohsin S.M, Mahmud J.A., Fujita M., Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9:681. doi: 10.3390/antiox9080681.
Sharkey T.D. Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell and Environment. 2005;28(3):269-277. doi: 10.ПП/].1365-3040.2005.01324.x.
Sharma A., Kumar V., Shahzad B., Ramakrishnan M., Sidhu G.P.S, Bali A.S, Handa N., Kapoor D., Yadav P., Khanna K., Bakshi P., Rehman A., Kohli S.K., Khan E.A., Parihar R.D., Yuan H., Thukral A.K., Bhardwaj R., Zheng B. Photosynthetic response of plants under different abiotic stresses: a review. Journal of Plant Growth Regulation. 2020;39:509-531. doi: 10.1007/s00344-019-10018-x.
Cho J.H., Yang U., Wi S.G., Lee B.R., Oh S., Kim M.S., Lee S.H. Potential effects of temperature differences on the soluble sugar content in pear fruit during the growing seasons of 2018 and 2019. Horticultural Science and Technology. 2021;31:560-571. doi: 10.7235/ HORT.20210050.
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 2019;24(13):2452. doi: 10.3390/molecules24132452.
Feng Y., Wei J., Zhang G., Sun X., Wang W., Wu C., Tang M., Gan Z., Xu X., Chen S., Wang Y. Effects of cooling measures on ‘Nijisseiki’ pear (Pyrus pyrifolia) tree growth and fruit quality in the hot climate. Scientia Horticulturae. 2018;238:318-324. doi: 10. 1016/j.scienta.2018.05.002.
Landi M. Commentary to: “Improving the thiobarbituric acid-reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds” by Hodges et al., Planta (1999) 207:604-611. Planta. 2017;245:1067. doi: 10.1007/s00425-017-2699-3.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry. 1976;72:248-254.
Hodges D.M., DeLong J.M., Forney C.F., Prange R.K. Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604-611.
Metody biokhimicheskogo issledovaniya rasteniy [Methods of biochemical research on plants]. Ermakov A.I., editor. Leningrad: Agropromizdat; 1987. 429 p. In Russian.
Queiroz C., da Silva A.J.R., Lopes M.L.M, Fialho E., Valente-Mesquita V.L. Polyphenol oxidase activity, phenolic acid composition and browning in cashew apple (Anacardium occidentale L.) after processing. Food Chemistry. 2011;125:128-132. doi: 10.1016/ j.foodchem.2010.08.048.
Radyukina N.L., Ivanov Y.V., Shevyakova N.I. Metody otsenki soderzhaniya aktivnykh form kisloroda, nizkomolekulyarnykh antioksidantov i aktivnostey osnovnykh antioksidantnykh fermentov [...]. In: Molekulyarnogeneticheskiye i biokhimicheskiye metody v sovremennoy biologii rasteniy [Molecular-genetic and biochemical methods in modern plant biology]. Kuznetsov Vl.V., Kuznetsov V.V., Romanov G.A., editors. Moscow: BINOM; 2012. pp. 352-356. In Russian.
Wei Z., Gao T., Liang B., Zhao Q., Ma F., Li C. Effects of exogenous melatonin on methyl viologen-mediated oxidative stress in apple leaf.International Journal of Molecular Sciences. 2018;19(1):316. doi: 10.3390/ijms19010316.
Hikmawanti N., Fatmawati S., Asri A.W. The effect of ethanol concentrations as the extraction solvent on antioxidant activity of katuk (Sauropus androgynus (L.) Merr.) leaves extracts. IOP Conf. Series: Earth and Environmental Science. 2021;755:012060. doi: 10.1088/1755-1315/755/1/012060.
Lichtenthaler H.K., Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry. 2001;F4.2.1. doi: 10.1002/047n42913.faf3403s01.
Ainsworth E.A., Gillespie K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols. 2007;2:875-877. doi: 10.1038/nprot.2007.102.
Golyshkina L.V., Krasova N.G., Galasheva A.M. Hyperthermia effect on the activity of the enzyme system of peroxidase in tissues of annual apple shoots. Contemporary Horticulture. 2014;4:50-59. In Russian, English summary.
Verma M.K. Pear production technology. In: Training manual on teaching of postgraduate courses in horticulture (Fruit Science). Singh S.K., Munshi A.D., Prasad K.V., Sureja A.K., editors. New Delhi: Post Graduate School, Indian Agricultural Research Institute; 2014. pp. 249-255.
Liu D.F., Zhang D., Liu G.Q., Hussain S., Teng Y.W. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). Journal of Zhejiang University Science. 2013;B14:1070-1083. doi:10.1631/jzus.B1300094.
Niu T., Zhang T., Qiao Y., Wen P., Zhai G., Liu E., Al-Bakre D.A., Al-Harbi M.S., Gao X., Yang X. Glycinebetaine mitigates drought stress-induced oxidative damage in pears. PLoS ONE. 2021;16(11):e0251389. doi:10.1371/journal.pone.0251389.
Ji W.W., Qiu C.H., Jiao Y., Guo Y.P., Teng Y.W. Effects of high temperature and strong light on photosynthesis, D1 protein, and the Deg1 protease in pear (Pyrus pyrifolia) leaves. Journal of Fruit Science. 2012;29:794-799.
Svistunova N.Yu., Burmenko Yu.V. Pear breeding (Pyrus L.) modern achievements and directions in Russia (review). Vestnik KrasGAU - Bulliten KrasSAU. 2022;2:85-92. In Russian, English summary. doi: 10.36718/1819-4036-2022-2-85-92.
Zarafshar M., Akbarinia M., Askari H., Hosseini S.M., Rahaie M., Struve D., Striker G.G. Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana). Biotechnology, Agronomy, Society and Environment. 2014;18(3):353-366.
Mozhar N.V. The reaction of pear varieties to changes in environmental conditions in the spring. Scientific Publications of FSBSO NCRRIH&V. 2021;31:71-74. In Russian, English summary. doi: 10.4172/2157-7471.1000353.
Ermolenko V.G., Аpolokhov F.F., Mozhar N.V. Prospects for pear growing in the central Precaucasia. Fruit Growing and Viticulture of South Russia. 2020;66(6):284-294. In Russian, English summary. doi: 10.30679/2219-5335-2020-6-66-284-294.
Semin I.V., Dolmatov E.A., Ozherelieva Z.E. Prospects for the use of intensive rootstock for cultivation of pear cultivars in the conditions of Central Russia. Ovoshchi Rossii - Vegetable crops of Russia. 2020;5:75-80. In Russian, English summary. doi: 10.18619/2072-9146-2020-5-75-80.
Itai A. Pear. In: Fruits and Nuts. Genome Mapping and Molecular Breeding in Plants. Vol. 4. Kole C, editor. Berlin, Heidelberg: Springer, 2007. pp. 157-170. doi: 10.1007/ 978-3-540-34533-6_6.
Dumanovic J., Nepovimova E., Natic M., Kuca K. Jacevic V. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Frontiers in Plant Science. 2021;11:552969. doi: 10.3389/fpls.2020.552969.
Hu S., Ding Y., Zhu C. Sensitivity and responses of chloroplasts to heat stress in plants. Frontiers in Plant Science. 2020;11:375. doi: 10.3389/fpls.2020.00375.
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 2010;48:909e930. doi: 10. 1016/j.plaphy.2010.08.016.
Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R. Mohanty P. Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research. 2008;98:541-550. doi: 10.1007/s11120-008-9331-0.
Rezaei E.E., Webber H., Gaiser T., Naab J., Ewert F. HS in cereals: mechanisms and modelling. European Journal of Agronomy. 2015;64:98-113. doi: 10.1016/j.eja.2014.10.003.
Fahad S., Bajwa A.A., Nazir U., Anjum S.A., Farooq A., Zohaib A., Sadia S., Nasim W., Adkins S., Saud S., Ihsan M.Z., Alharby H., Wu C., Wang D., Huang J. Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science. 2017;8:1147. doi: 10.3389/fpls.2017.01147.
Fahad S., Hussain S., Saud S., Khan F., Hassan S., Amanullah, Nasim W., Arif M., Wang F., Huang J. Exogenously applied plant growth regulators affect heat-stressed rice pollens. Journal of agronomy and crop science. 2016;202:139-150. doi: 10.1111/jac.12148.
Hassan M.U., Chattha M.U., Khan I., Chattha M.B., Barbanti L., Aamer M., Iqbal M.M., Nawaz M., Mahmood A., Ali A., Aslam M.T. Heat stress in cultivated plants: nature, impact, mechanisms, and mitigation strategies - a review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology. 2021;155:211-234. doi: 10.1080/ 11263504.2020.1727987.
Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: an overview. Environmental and Experimental Botany. 2007;61:199-223. doi: 10.1016/j.envexpbot.2007. 05.011.
Climate change 2014: synthesis report. In: Proceedings of the Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri R.K., Meyer L.A., editors. Geneva: IPCC; 2014. 151 p.
 Physiological response of pear cultivars to short-term high temperature stress | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. №  72. DOI: 10.17223/19988591/72/11

Physiological response of pear cultivars to short-term high temperature stress | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2025. № 72. DOI: 10.17223/19988591/72/11

Download full-text version
Counter downloads: 21