Effectiveness of Varroa destructor mite control methods and some prospects for breeding honey bee populations resistant to it
To combat the mite Varroa destructor, identified by Anderson and Trueman (2000) as the most significant pathological threat to honey bees and the causative agent of the invasive disease varroatosis, various chemical, biological, and zootechnical control methods have been developed and proposed. However, no sufficiently effective protection methods currently exist against this mite. The widespread use of chemical control agents contributes to the accumulation of residual substances in bee products and becomes ineffective due to the development of acaricide resistance in mite populations. Additionally, chemical treatments reduce the selective pressure of natural selection, thereby hindering coevolutionary processes that establish stable parasite-host relationships. An alternative approach to reducing dependence on acaricides involves selectively increasing hereditary resistance or tolerance to the mite through breeding programs. Although this approach has achieved some success in practical breeding, it is labor-intensive and often depends on complex genetically determined behaviors that are difficult to phenotype. Research Objective: to conduct a comparative analysis of the effectiveness of physical (heat treatment) and chemical (acaricide "Bipin") methods for controlling V. destructor, considering their impact on the health of bee colonies and resistance to the mite. The study was conducted in the fall of 2022 at the apiaries of Denis Dmitriev and Alexander Moiseyev, located in the village of Strunino (59°30'03"N, 32°54'16"E) in Tikhvin district of Leningrad Oblast. For the physical method, worker bees were shaken from frames into a mesh container, weighed, and placed in a V.V. Yarankin thermal chamber (model YAV-79-09). Treatment involved exposure to hot air at 48°C for 15 min. After treatment, the bees were returned to their colonies, and the number of mites fallen to the bottom of the container was counted. For the chemical method, bees were treated with Bipin, condestructor taining 12.5% amitraz, following the manufacturer’s instructions. The working solution was applied along the hive “streets” at a rate of 10 ml per street. One week later, the number of mites fallen to the bottom of the hive was recorded. The degree of mite infestation, expressed as a percentage, was determined according to the guidelines for rapid diagnosis of varroatosis and assessment of mite infestation levels in apiary conditions, approved by the Main Veterinary Directorate of the Ministry of Agriculture of the USSR on January 16, 1984. In the first experiment, bee colonies were treated twice with Bipin (October 10 and 17, 2022) at weekly intervals. One week later (October 24, 2022), the same colonies underwent heat treatment. In the second experiment, the treatment order was reversed: colonies were first heat-treated, followed by two Bipin treatments. All counts and measurements were performed in triplicate. Chemical methods for controlling varroatosis using Bipin in the first experiment demonstrated high efficacy, particularly during the initial treatment (M = 1262.50 pcs, 5.48%), although there was considerable variability between colonies (CV = 166%). Physical control methods employing heat treatment in the second experiment were also effective (M = 479.00 pcs, 1.77%) and exhibited greater consistency between colonies (CV = 76%). Bipin treatment was more effective than heat treatment in the first experiment (p < 0.05), whereas heat treatment was more effective than Bipin in the second experiment (p < 0.001). However, the overall differences between Bipin and heat treatment were not statistically significant (p > 0.05), preventing a definitive conclusion regarding the superiority of either method. For practical application, a combined treatment approach is recommended: an initial Bipin treatment for rapid mite reduction, followed by heat treatment to maintain stable control of the residual mite population. For organic beekeeping, heat treatment alone is preferable, as it does not leave chemical residues. Effective varroatosis control in apiaries requires: initial treatment with Bipin for rapid mite infestation reduction; use of heat treatment as a primary or supplementary method for sustained control; monitoring mite infestation levels before and after treatments. When using Bipin, it is essential to adhere to recommended dosages (0.5 ml of 12.5% amitraz solution per 10 frames) and conduct treatments during periods of minimal bee activity (early spring or late autumn) to minimize stress. Compliance with regulations is necessary to reduce chemical residues in honey and wax. For heat treatment, equipment with precise temperature control (40-48°C) and exposure times (15-30 min) should be used. Treatments should be performed during the broodless period to maximize mite mortality while avoiding excessive heating to minimize adverse effects on adult bees and brood. Effective varroa-tosis management requires continuous monitoring and prevention, including regular diagnosis of mite infestation to determine optimal treatment timing, alternating chemical and physical methods to reduce the risk of mite resistance, and maintaining detailed treatment records. Additionally, efforts to develop Varroa-resistant honey bee populations exhibiting hygienic behavior through selective breeding are crucial. This approach will support sustainable beekeeping practices and contribute to preserving ecological balance and biodiversity. The article contains 2 Tables, 47References. The Authors declare no conflict of interest.
Keywords
honey bee,
varroatosis,
Bipin,
heat treatment,
bee selection,
mite resistanceAuthors
| Ilyasov Rustem A. | Koltsov Institute of Developmental Biology, Russian Academy of Sciences | apismell@hotmail.com |
| Ilyasova Alla Y. | Koltsov Institute of Developmental Biology, Russian Academy of Sciences | ilyasova_ay@idbras.ru |
| Korolev Alexander V. | Moscow State Academy of Veterinary Medicine and Biotechnology - MBA named after K.I. Scriabin | 5274381@mail.ru |
| Boguslavsky Dmitry V. | Koltsov Institute of Developmental Biology, Russian Academy of Sciences | boguslavsky@rambler.ru |
| Sattarov Vener N. | Bashkir State Pedagogical University named after M. Akmulla | wener5791@yandex.ru |
Всего: 5
References
Van Engelsdorp D., Underwood R.M., Cox-Foster D.L. Short-term fumigation of honey bee (Hymenoptera: Apidae) colonies with formic and acetic acids for the control of Varroa destructor (Acari: Varroidae) // Journal of Economic Entomology. 2008. Vol. 101, № 2. PP. 256-264. doi: 10.1093/jee/101.2.256.
Dietemann V., Pflugfelder J., Anderson D., Charriere J.D., Chejanovsky N., Dainat B., de Miranda J., Delaplane K., Dillier F., Fuch S., et al. Varroa destructor, research avenues towards sustainable control // Journal of Apicultural Research. 2012. Vol. 51, № 1. PP. 125-132. doi, 10.3896/IBRA.1.51.1.15.
Le Conte Y., Ellis M., Ritter W. Varroa mites and honey bee health, can Varroa explain part of the colony losses? // Apidologie. 2010. № 41. PP. 353-363. doi, 10.1051/apido/2010017.
Carreck N., Neumann P. Honey bee colony losses // Journal of Apicultural Research. 2010. Vol. 49, № 1. PP. 1-6. doi, 10.3896/IBRA.1.49.1.01.
De la Mora A., Goodwin P.H., Morfin N., Petukhova T., Guzman-Novoa E. Diversity of potential resistance mechanisms in honey bees (Apis mellifera) selected for low population growth of the parasitic mite, Varroa destructor // Insects. 2025. Vol. 16, № 4. 385. doi, 10.3390/insects16040385.
Ramsey S.D., Ochoa R., Bauchan G., Gulbronson C., Mowery J.D., Cohen A., Lim D., Joklik J., Cicero J.M., Ellis J.D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph // Proceedings of the National Academy of Sciences of the United States of America. 2019. Vol. 116, № 5. PP. 1792-1801. doi, 10.1073/pnas.181837m6.
Mondet F., Beaurepaire A., McAfee A., Locke B., Alaux C., Blanchard S., Danka B., Le Conte Y. Honey bee survival mechanisms against the parasite Varroa destructor, a systematic review of phenotypic and genomic research efforts // International Journal for Parasitology. 2020. Vol. 50, № 6-7. PP. 433-447. doi, 10.1016/j.ijpara.2020.03.005.
Королев А.В. Гибель пчелиных семей в летне-осенний период 2014 г. // Пчеловодство. 2015. № 3. С. 3-5.
Королев А.В., Балакирев Н.А., Масленникова В.И. Анализ причин гибели пчелиных семей в мире // Современные проблемы пчеловодства и пути их решения, материалы междун. научно-практ. конф. Москва, 2016. С. 248-252.
Martin S.J., Highfield A.C., Brettell L., Villalobos E.M., Budge G.E., Powell M., Nikaido S., Schroeder D.C. Global honey bee viral landscape altered by a parasitic mite // Science. 2012. Vol. 336, № 6086, PP. 1304-1306. doi, 10.1126/science.1220941.
Mondet F., Le Conte Y. Parasites in bee health and veterinarians. Paris , The Office International des Epizooties (OIE), 2014. PP. 131-141.
Wilfert L., Long G., Leggett H.C., Schmid-Hempel P., Butlin R., Martin S.J.M., Boots M. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites // Science. 2016. Vol. 351, № 6273. PP. 594-597. doi, 10.1126/science. aac9976.
Спрыгин А.В., Бабин Ю.Ю., Ханбекова Е.М., Рубцова Л.Е. Угрозы распространения вирусных инфекций у пчел (Apis mellifera L.) и роль клеща Varroa destructor в развитии патологий // Сельскохозяйственная биология. 2016. Т. 51, № 2. С. 156171. doi, 10.15389/agrobiology.2016.2.156rus.
Ball B.V. The association of Varroa jacobsoni with virus diseases of honey bees // Meeting of the EU Experts’ Group. Wageningen, 1983. PP. 21-23.
Amdam G.V., Hartfelder K., Norberg K., Hagen A., Omholt S.W. Altered physiology in worker honey bees infested with the mite Varroa destructor. A factor in colony loss during overwintering // Journal of Economic Entomology. 2004. Vol. 97, № 3. PP. 741-747. doi, 10,1093/jee/97,3.741.
Peng Y.S., Fang Y., Xu S., Ge L. The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans // Journal of Invertebrate Pathology. 1987. Vol. 49, № 1. PP. 54-60. doi, 10.1016/0022-2011(87)90125-X.
Boecking O., Rath W., Drescher W. Behavioral strategies of Apis mellifera and Apis cerana against Varroa jacobsoni // International Journal of Acarology. 1993. Vol. 19, № 2. PP. 173-177. doi, 10.1080/01647959308683977.
Page P., Lin Z., Buawangpong N., Zheng H., Hu F., Neumann P., Chantawannakul P., Dietemann V. Social apoptosis in honey bee superorganisms // Scientific Reports. 2018. № 6. 27210. doi: 10.1038/srep27210.
Lin Z., Qin Y., Page P., Wang S., Li L., Wen Z., Hu F., Neumann P., Zheng H., Dietemann V. Reproduction of parasitic mites Varroa destructor in original and new honeybee hosts // Ecology and Evolution. 2018. Vol. 8, № 4. PP. 2135-2145. doi: 10.1002/ece3.3802.
Oldroyd B.P. Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees // Trends in Ecology & Evolution. 1999. Vol. 14, № 8. PP. 312-315. doi: 10.1016/S0169-5347(99)01613-4.
Milani N. The resistance of Varroa jacobsoni Oud. to acaricides // Apidologie. 1999. Vol. 30, № 2-3. PP. 229-234. doi: 10.1051/apido:19990211.
Rosenkranz P., Aumeier P., Ziegelmann B. Biology and control of Varroa destructor // Journal of Invertebrate Pathology. 2010. № 103. PP. 96-119. doi: 10.1016/j.jip.2009.07.016.
Beaurepaire A.L., Krieger K.J., Moritz R.F.A. Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance // Infectious Genetics and Evolution. 2017. № 50. PP. 49-54. doi: 10.1016/j.meegid.2017.02.011.
Neumann P., Blacquiere T. The Darwin cure for apiculture? Natural selection and managed honeybee health // Evolutionary Applications. 2016. Vol. 10, № 3. PP. 226-230. doi: 10.1111/eva.12448.
Buchler R., Berg S., Le Conte Y. Breeding for resistance to Varroa destructor in Europe // Apidologie. 2010. № 41. PP. 393-408. doi: 10.1051/apido/2010011.
Rinderer T.E., Harris J.W., Hunt G.J., de Guzman L.I. Breeding for resistance to Varroa destructor in North America // Apidologie. 2010. Vol. 41, № 3. PP. 409-424. doi: 10.1051/apido/2010015.
Dekkers J.C.M., Hospital F. The use of molecular genetics in the improvement of agricultural populations // Nature Reviews Genetics. 2002. № 3. PP. 22-32. doi: 10.1038/nrg701.
Beaurepaire A., Sann C., Arredondo D., Mondet F., Le Y., Conte Y. Behavioral Genetics of the Interactions between Apis mellifera and Varroa destructor // Insects. 2019. Vol. 10, № 9. 299. doi: 10.3390/insects10090299.
Morfm N., Anguiano-Baez R., Guzman-Novoa E. Honey bee (Apis mellifera) immunity // Veterinary Clinics of North America: Food Animal Practice. 2021. Vol. 37, № 3. PP. 521-533. doi: 10.1016/j.cvfa.2021.06.007.
Oddie M.a.Y., Dahle B., Neumann P., 2017. Norwegian honey bees surviving Varroa destructor mite infestations by means of natural selection // PeerJ. 2017. e3956. doi: 10. 7717/peerj.3956.
Le Conte Y., Meixner M.D., Brandt A., Carreck N.L., Costa C., Mondet F., Buchler R. Geographical distribution and selection of European honey bees resistant to Varroa destructor // Insects. 2020. Vol. 11, № 12. 873. doi: 10.3390/insects11120873.
Le Conte Y., De Vaublanc G., Crauser D., Jeanne F., Rousselle J.-C., Becard J.-M. Honey bee colonies that have survived Varroa destructor // Apidologie. 2007. Vol. 38, № 6. PP. 566-572. doi: 10.1051/apido:2007040.
Kefuss J., Vanpoucke J., Bolt M., Kefuss C. Selection for resistance to Varroa destructor under commercial beekeeping conditions // Journal of Apicultural Research. 2015. 54 (5). PP. 563-576. doi: 10.1080/00218839.2016.1160709.
De La Mora A., Emsen B., Morfm N., Borges D., Eccles L., Kelly P.G., Goodwin P.H., Guzman-Novoa E. Selective breeding for low and high Varroa destructor growth in honey bee (Apis mellifera) colonies: Initial results of two generations // Insects. 2020. Vol. 11, № 12. 864. doi: 10.3390/insects11120864.
Fries I., Hansen H., Imdorf A., Rosenkranz P. Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden // Apidologie. 2003. № 34. PP. 389-397. doi: 10.1051/apido:2003032.
Locke B. Natural Varroa mite-surviving Apis mellifera honeybee populations // Apidologie. 2016. PP. 1-16. doi: 10.1007/s13592-015-0412-8.
Wagoner K., Spivak M., Hefetz A., Reams T., Rueppell O. Stock-specific chemical brood signals are induced by Varroa and deformed wing virus, and elicit hygienic response in the honey bee // Scientific Reports. 2019. 8753. doi: 10.1038/s41598-019-45008-2.
Harpur B.A., Guarna M.M., Huxter E., Higo H., Moon K.-M., Hoover S.E., Ibrahim A., Melathopoulos A.P., Desai S., Currie R.W., Pernal S.F., Foster L.J., Zayed A.Integrative genomics reveals the genetics and evolution of the honey bee’s social immune system // Genome Biology and Evolution. 2019. Vol. 11, № 3. PP. 937-948. doi: 10.1093/ gbe/evz018.
Kim J.S., Kim M.J., Kim H.-K., Vung N.N., Kim I. Development of single nucleotide polymorphism markers specific to Apis mellifera (Hymenoptera: Apidae) line displaying high hygienic behavior against Varroa destructor, an ectoparasitic mite // Journal of Asia-Pacific Entomology. 2019. Vol. 22, № 4. PP. 1031-1039. doi: 10.1016/j.aspen. 2019.08.005.
Conlon B.H., Aurori A., Giurgiu A.-I., Kefuss J., Dezmirean D.S., Moritz R.F.A., Routtu J. A gene for resistance to the Varroa mite (Acari) in honey bee (Apis mellifera) pupae // Molecular Ecology. 2019. Vol. 28, № 12. PP. 2958-2966. doi: 10.1111/mec.15080.
Arechavaleta-Velasco M.E., Alcala-Escamilla K., Robles-Rios C., Tsuruda J.M., Hunt G.J. Fine-scale linkage mapping reveals a small set of candidate genes influencing honey bee grooming behavior in response to Varroa mites // PLoS One. 2012. Vol. 7, № 11. e47269. doi: 10.1371/journal.pone.0047269.
Spotter A., Gupta P., Mayer M., Reinsch N., Bienefeld K. Genome-wide association study of a Varroa-specific defense behavior in honeybees (Apis mellifera) // Journal of Heredity. 2016. Vol. 107, № 3. PP. 220-227. doi: 10.1093/jhered/esw005.
Jones J.C., Du Z.G., Bernstein R., Meyer M., Hoppe A., Schilling E., Ableitner M., Juling K., Dick R., Strauss A.S., Bienefeld K. Tool for genomic selection and breeding to evolutionary adaptation: Development of a 100 K single nucleotide polymorphism array for the honey bee // Ecology and Evolution. 2020. Vol. 10, № 13. PP. 6246-6256. doi: 10.1002/ece3.6357.
Mondet F., Alaux C., Severac D., Rohmer M., Mercer A.R., Le Conte Y. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees // Scientific Reports. 2015. Vol. 5. 10454. doi: 10.1038/srep10454.
Hu H., Bienefeld K., Wegener J., Zautke F., Hao Y., Feng M., Han B., Fang Y., Wu-bie A.J., Li J. Proteome analysis of the hemolymph, mushroom body, and antenna provides novel insight into honeybee resistance against Varroa infestation // Journal of Proteome Research. 2016. Vol. 15, № 8. PP. 2841-2854. doi: 10.1021/acs.jproteome. 6b00423.