Sensitivity of respiration and swelling of cereals mitochondria to modifying permeabilitymitochondrial membranes compounds
The aim of the given investigation was to study the influence of compounds modifyingpermeability of mitochondrial membranes on the functioning of cereals mitochondria differingin the extent of cold resistance. It is shown that Ca-dependent and CsA-sensitivepore exist in mitochondria of studied cereals. It is determined that short-term and longcold treatments of winter wheat seedlings lead to a decrease in sensitivity of respirationand swelling of isolated mitochondria to CsA that shows again after oxidative stress followingcold stress. This fact allows supposing the change of mitochondrial pore propertiesunder stress conditions. ADP/ATP antiporter takes part in swelling mitochondriafrom winter wheat both in normal and in stress conditions. The short-term cold treatmentleads to an increase in contribution of uncoupling proteins to swelling mitochondriafrom winter wheat that is caused by increasing content of FFA in mitochondria. It is determinedthat in winter wheat mitochondria Ca-dependent and CsA-sensitive pore ispalmitate-dependent.
Keywords
рermeability transition pore,
uncoupling of oxidative phosphorylation,
swelling,
respiration,
mitochondria,
высокопроницаемая митохондриальная пора,
разобщение окислительного фосфорилирования,
набухание,
дыхание,
митохондрииAuthors
Pavlovskaya Natalie S. | Siberian Institute of Plant Physiology and Biochemistryof Russian Academy of Sciences | pavnatser@mail.ru |
Grabelnych Olga I. | Siberian Institute of Plant Physiology and Biochemistryof Russian Academy of Sciences | grolga@sifibr.ru |
Pobezhimova Tamara P. | Siberian Institute of Plant Physiology and Biochemistryof Russian Academy of Sciences | pobezhimova@sifibr.irk.ru |
Koroleva Nina A. | Siberian Institute of Plant Physiology and Biochemistryof Russian Academy of Sciences | grolga@sifibr.ru |
Voinikov Viktor K. | Siberian Institute of Plant Physiology and Biochemistryof Russian Academy of Sciences | vvk@sifibr.irk.ru |
Всего: 5
References
Kaasik A., Safiulina D., Zharkovsky A., Veksler V. Regulation of Mitochondrial Matrix Volume // Am. J. Physiol. Cell Physiol. 2007. Vol. 292. Р. 157-163.
He L., Lemasters J.J. Regulated and Unregulated Mitochondrial Permeability Transition Pores: a New Paradigm of Pore Structure and Function // FEBS Lett. 2002. Vol. 512. P. 1-7.
Murayama S., Handa H. Isolation and Characterization of cDNAs Encoding Mitochondrial Uncoupling Proteins in Wheat: Wheat UCP-genes are not Regulated by Low Temperature // Mol. Gen. Genet. 2000. Vol. 264. P. 112-118.
Замятнина В.А., Бакеева Л.Е., Александрушкина Н.И., Ванюшин Б.Ф. Апоптоз в первом листе у этиолированных проростков пшеницы: влияние антиоксиданта ионола (ВНТ) и перекисей // Биохимия. 2002. Т. 67, вып. 2. С. 253-264.
Hansson M.J., Persson T., Friberg H., Keep M.F., Rees A., Wieloch T., Elmer E. Powerful Cyclosporin Inhibition of Calcium-Induced Permeability Transition in Brain Mitochondria // Brain Research. 2003. Vol. 960. Р. 99-111.
Скулачев В.П. Энергетика биологических мембран. М.: Наука, 1989. 564 с.
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein Measurement with Folin Phenol Reagent // J. Biol. Chem. 1951. Vol. 193. P. 265-275.
Laemmli U.K. Cleavage of Structural Proteins during the Assemble of the Head Bacteriophage T4 // Nature. 1970. Vol. 227, № 5259. P. 680-685.
Estabrook R.W. Mitochondrial Respiratory Control and the Polarographic Measurement of ADP:O Ratio // Methods Enzymol. 1967. Vol. 10. P. 41-47.
Tolbert N.E. Isolation of Sub-Cellular Organelles of Metabolism on Isopicnic Sucrose Gradients // Methods Enzymol. 1974. Vol. 31. P. 734-746.
Трушанов А.А. Изготовление в лабораторных условиях закрытого полярографического электрода Кларка // Руководство по изучению биологического окисления полярографическим методом / Отв. ред. Г.М. Франк. М.: Наука, 1973. 221 с.
Войников В.К. К вопросу о выделении интактных растительных митохондрий // Известия Сибирского отделения АН СССР. Сер. биол. наук. 1980. Т. 10, вып. 2. С. 121-125.
Побежимова Т.П., Грабельных О.И., Колесниченко А.В., Сумина О.Н., Войников В.К. Локализация белков, иммунохимически родственных субъединицам стрессового белка 310 кД, в митохондриях озимой пшеницы // Физиология растений. 2001. Т. 48. С. 238-244.
Koukalova B., Kovarik A., Fajkus J., Siroky J. Chromatin Fragmentation Associated with Apoptotic Changes in Tobacco Cells Exposed to Cold Stress // FEBS Lett. 1997. Vol. 414. P. 289-292.
Кирнос М.Д., Александрушкина Н.И., Шорнинг Б.Ю., Кудряшова И.Б., Ванюшин Б.Ф. Межнуклеосомная фрагментация и синтез ДНК в проростках пшеницы // Физиология растений. 1999. Т. 46. С. 48-57.
Virolainen E., Blokhina O., Fagerstedt K. Ca2+-Induced High Amplitude Swelling and Cytochrome c Release from Wheat (Triticum aestivum L.) Mitochondria under Anoxic Stress // Ann. Bot. 2002. Vol. 90. P. 509-516.
Balk J., Leaver C.J., McCabe P.F. Translocation of Cytochrome c from the Mitochondria to the Cytosol Occurs during Heat-Induced Programmed Cell Death in Cucumber Plants // FEBS Lett. 1999. Vol. 463. P. 151-154.
Curtis M.J., Wolpert T.J. The Oat Mitochondrial Permeability Transition and Its Implication in Victorin Binding and Induced Cell Death // Plant J. 2002. Vol. 29, № 3. P. 295-312.
Arpagaus S., Rawyler A., Braendle R. Occurrence and Characteristics of the Mitochondrial Permeability Transition in Plants // J. Biol. Chem. 2002. Vol. 277, № 3. P. 1780-1787.
Tiwari B.S., Belenghi B., Levine A. Oxidative Stress Increased Respiration and Generation of Reactive Oxygen Species, Resulting in ATP Depletion, Opening of Mitochondrial Permeability Transition, and Programmed Cell Death // Plant Physiol. 2002. Vol. 103. P. 845-854.
Fortes F., Castilho R.F., Catisti R., Carnieri E.G.S., Vercesi A.E. Са2+ Induces a Cyclosporin A-Insensitive Permeability Transition Pore in Isolated Potato Tuber Mitochondria Mediated by Reactive Oxygen Species // J. Bioenerg. Biomembr. 2001. Vol. 33, № 1. P. 43-51.
Wojtczak L., Schonfeld P. Effect of Fatty Acid on Energy Coupling Processes in Mitochondria // Biochim. Biophys. Acta. 1993. Vol. 1183. P. 41-57.
Skulachev V.P. Fatty Acid Circuit as a Physiological Mechanism of Uncoupling of Oxidative Phosphorylation // FEBS Lett. 1991. Vol. 294. P. 158-162.
Skulachev V.P. Uncoupling: New Approaches to an Old Problem of Bioenergetics // Biochim. Biophys. Acta. 1998. Vol. 1363. P. 100-124.
3. Di Paola M., Lorusso M. Interaction of Free Fatty Acids with Mitochondria: Coupling, Uncoupling and Permeability Transition // Biochim. Biophys. Acta. 2006. Vol. 1757. Р. 1330- 1337.
Belosludtsev K.N., Saris N.E., Andersson L.C., Belosludtseva N., Agafonov A., Sharma A., Moshkov D.A., Mironova G.D. On the Mechanism of Palmitic Acid-Induced Apoptosis: the Role of a Pore Induced by Palmitic Acid and Ca2+ in Mitochondria // J. Bioenerg. Biomembr. 2006. Vol. 38, № 2. P. 113-120.
Crompton M. The Mitochondrial Permeability Transition Pore and Its Role in Cell Death // Biochem. J. 1999. Vol. 341. P. 233-249.
Tsujimoto Y., Shimizu S. Role of the Mitochondrial Membrane Permeability Transition in Cell Death // Apoptosis. 2007. Vol. 12, № 5. P. 835-840.