PHYSIOLOGICAL ROLE OF BRASSINOSTEROIDS IN ARABIDOPSIS THALIANA (L.) HEYNH SEEDLING DEVELOPMENT UNDER SELECTIVE LIGHT
The regulatory role of light depends on the type of spectrum and can be realized through numerous receptors. Light does not function independently but it is integrated with phytohormones, for temporal and spatial regulation of plant photomorphogenesis. Some of phytohormones, brassinosteroids do not only participate in pathways for light signal transduction but they can imitate the light action. At present time, the study of the physiological role of green light is of great interest. Despite numerous physiological studies of this question, little is known about the participation of some phytohormones in transduction of green light signal.The plant model to study the regulatory role of selective light in plant morphogenesis and possible participants (DET2) in signal transduction of blue and green signals is Arabidopsis thaliana. A. thaliana ecotype Columbia (Col) and det2 mutant with disturbed synthesis of brassinolide were used. The light development appeared for det2 seedlings in darkness. The response reaction of axis organs of Arabidopsis seedlings with low level of brassinosteroids under selective light was more significant than the wild type's one. The highest inhibition of hypocotyls growth for Col and det2 seedlings was marked under blue light. The long hypocotyls of wild type of Arabidopsis lines corresponded to small cotyledons, whereas mutant seedlings under green light formed the long hypocotyls and bigger cotyledons.We can observe reaction of root system of Arabidopsis plants under selective light. For the first time the role of green light in root development was shown and the response reaction of roots under selective light according to endogenous balance of brassinosteroids was studied.Significant increased in photosynthetic pigment content in Arabidopsis seedlings under selective light was observed. The pigment system of seedlings with disturbed synthesis of brassinolide wasn 't specific in the blue and green light reaction, while high sensitivity to blue light was noted for Col seedlings.So, physiological activity of green light as well as of blue light in the regulation of plant morphogenesis and pigment content of Arabidopsis thaliana seedling was noted. For the first time it was shown that green light participated in root development bound with brassinosteroids levels. Based on investigation results about the action of selective light in the morphogenesis of Arabidopsis seedlings and initiation of det2 light development in darkness we can assume that brassinosteroids modify light reaction of plants and get involved in the transduction of blue and green light signals.
Keywords
brassinosteroids,
blue light, green light,
photosynthetic pigments,
photomorphogenesis,
Arabidopsis thaliana (L.) Heynh.,
синий свет,
зеленый свет,
брассиностероиды,
Arabidopsis thaliana (L.) Heynh.,
фотоморфогенез,
фотосинтетические пигментыAuthors
Efimova Marina V. | Biological Institute of Tomsk State University | stevia555@mail.ru |
Всего: 1
References
TóthR., Keve, É., Hall A., Millar A.J., Nagy F., Kozma-Bognár L. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis // Plant Physiol. 2001. Vol. 127. P. 1607-1616.
Usami Т., Mochizuki N., Kondo M., Nishimura M., Nagatani A. Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light // Plant Cell Physiol. 2004. Vol. 45, № 12. P. 1798-1808.
Zeiger E. Sensory transduction of blue light in guard cells // Trends Plant Sсi. 2000. Vol. 5. P. 183-185.
Frechilla S., Talbott L.D., Bogomolni R.A., Zeiger E. Reversal of blue light-stimulated stomatal opening by green light // Plant Cell Physiol. 2000. Vol. 41. P. 171-176.
Christie J.M., Reymond P., Powell G.K., Bernasconi P., Raibekas A.A., Liscum E., Briggs W.R. Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism//Science. 1998. Vol. 282. P. 1698-1701.
Ahmad M., Grancher N., Heil M., Black R.C., Giovani В., Galland P., Lardemer D. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis // Plant Physiol. 2002. Vol. 129. P. 774-785.
Somers D.E., Quail P.H. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis // The Plant Journal. 1995. Vol. 7, № 3. P. 413-427.
Pepper A.E., Seong-Kim M., Hebst SM., Ivey K.N., Kwak S. J., Broyles D.E. shl, a new set of Arabidopsis mutants with exaggerated developmental responses to available red, far-red, and blue light//Plant Physiol. 2001. Vol. 127. P. 295-304.
Минич A.C., Минич И.Б., Зеленчукова Н.С., Карначук P.A., Головацкая И.Ф., Ефимова М.В., Райда B.C. Роль красного люминесцентного излучения низкой интенсивности в регуляции морфогенеза и гормонального баланса Arabidopsis thaliana // Физиология растений. 2006. Т. 53, № 6. С. 863-868.
Гвоздева Е.С., Ефимова М.В., Карначук P.A., Дорофеев В.Ю., Асташкина М.П. Роль света в морфогенезе клеточной культуры in vitro трансгенного табака с геном интерлейкина-18 человека // Вестник Томского государственного университета. 2007. №300(2). С. 116-118.
Карначук P.A., Большакова М.А., Ефимова М.В., Головацкая И. Ф. Интеграция сигналов синего света и жасмоновой кислоты в морфогенезе Arabidopsis thaliana (L.) Heynh. // Физиология растений. 2008. Т. 54, № 5. С. 665-670.
Klein R.M. Effects of green light on biological systems // Biol. Rev. Camb. Philos. Soc. 1992. Vol. 67. P. 199-284.
Kim T.W., Wang Z.Y. Brassinosteroid signal transduction from receptor kinases to transcription factors //Amu. Rev. Plant Biol. 2010. № 61. P. 681-704.
Ефимова М.В., Карначук P.A., Головацкая И.Ф., Хрипач В.А., Драч С.В., Литвиновская Р.П. Взаимодействие сигналов синего, зеленого света и брассиностероидов на ранних этапах онтогенеза Arabidopsis thaliana (L.) Heynh. // Материалы докладов VI съезда Общества физиологов растений России и Международной конференции «Современная физиология растений: от молекул до экосистем» (в трех частях). Сыктывкар: Коми НЦ УрО РАН, 2007. Ч. 1. С. 278-280.
Ефимова М.В. Роль света и брассиностероидов в регуляции морфогенеза Arabidopsis thaliana (L.) Heynh.: Автореф. дис. ... канд. биол. наук. М., 2006. 23 с.
Ефимова М.В., Карначук P.A., Литвиненко И.В., Драч С.В., Хрипач В.А. Влияние селективного света на морфогенез и уровень эндогенных брассиностероидов в проростках Arabidopsis thaliana (L.) Heynh. // Тезисы докладов годичного собрания общества физиологов растений России и Международной конференции «Физико-химические механизмы адаптации растений к антропогенному загрязнению в условиях Крайнего Севера». Апатиты, 2009. С. 156.
Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photo synthetic biomembranes //Methods in Enzymology. 1987. № 148. P. 350-382.
Головацкая И.Ф., Карначук Р.А. Роль брассинолида в регуляции роста и гормонального баланса Arabidopsis thaliana (L.) Heynh. на зеленом свету // Вестник Томского государственного университета. Биология. 2010. № 1 (9). С. 13-19.
Головацкая И.Ф., Карначук P.A., Ефимова М.В., Копылова Т.Н., Светличный В.А. Роль криптохрома 1 и фитохромов А-Е в регуляции роста арабидопсиса на зеленом свету // Вестник Томского государственного университета. 2007. № 297. С. 184-187.
Dhingra A., Bies D.H., Lehner K.R., Folta K.M. Green light adjusts the plastid transcriptome during early photomorphogenic development // Plant Physiology. 2006. Vol. 142. P. 1256-1266.
Folta K.M., Maruhnich S.A. Green light: a signal to slow down or stop // Journal of Experimental Botany. 2007. Vol. 58, № 12. P. 3099-3111.
Terashima I., Fujita Т., Inoue Т., Chow W.S., Oguchi R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green // Plant Cell Physiol. 2009. Vol. 50, № 4. P. 684-697.
Folta K.M. Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition//Plant Physiology. 2004. Vol. 135. P. 1407-1416.
Pédron J., Agnes C., Simond-Cǒte E., Costa C., Lobstein E., Kraepiel Y. Polar auxin transport is required for the inhibition by blue light of the elongation-related LeXT tomato gene // Plant Growth Regulation. 2004. Vol. 42. P. 113-123.
Карначук P.A. Регуляторное влияние зеленого света на рост и фотосинтез листьев // Физиология растений. 1987. Т. 34, № 4. С. 765-773.
Коловацкая И. Ф., Карначук P.A., Ефимова М.В. Рост и гормональный баланс арабидопсиса на зеленом свету//Вестник Башкирского университета. 2001. №2. С. 114-116.
Головацкая И.Ф., Ефимова М.В. К вопросу о фоторецепторе зеленого света // Вестник Томского государственного университета. Приложение № 8. Ноябрь 2003. С. 48-50.
Symons G.M., Reid J.B. Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels // Plant Physiol. 2004. Vol. 135. P. 2196-2206.
Li J., Nagpal P., Vitart V., McNorris Т.О., Chory J. A role for brassinosteroids in light-dependent development in Arabidopsis // Science. 1996. Vol. 272. P. 398-401.
Карначук P.A., Головацкая И.Ф., Ефимова М.В., Хрипач В.А. Действие 24-эпибрассинолида на морфогенез и соотношение гормонов у проростков Arabidopsis на зеленом свету // Физиология растений. 2002. Т. 49, № 4. С. 591-595.
Neff M.M., Nguyen S.M., Malancharuvil E.J., Fujioka S., Noguchi Т., Seto H., Tsubuki M., Honda T., Takatsuto S., Yoshida S., Chory J. BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis //PNAS. 1999. Vol. 96. P. 15316-15323.
Khripach V.A., Zhabinskii V.N., Karnachuk R.A. Chemical probes in biology / Science at the interface of brassinosteroids: a new role of steroids as biosignaling molecules. 2003. M.P. Schneider. Ed. Netherlands: Kluwer Academic Publishers. Vol. 129. P. 153-167. NATO Science Series. 391 p.
Casal J..J. Phytochromes, cryptochromes, phototropin: photoreceptor interaction in plant // Photochem. Photobiol. 2001. Vol. 71. P. 1-11.
Briggs W.R., Olney М.А. Photoreceptors in plant photomorphogemesis to date. Five photochromes, two cryptochromes, one phototropin, and one superchrome // Plant Physiology. 2001. Vol. 125. P. 85-88.
Волотовский И.Д. Фитохром. Строение и физико-химические свойства // Физиология растений. 1987. Т. 34, № 4. С. 644-655.
Ahmad М., Cashmore A.R. HY4 gene of A. thaliana encodes a protein with characteristics of a bluelight photoreceptor//Nature. 1993. Vol. 366. P. 162-166.