Molecular-cytogenetic analysis of chromosome attachment regions to nurse cells nuclear envelope in Anopheles malaria mosquitoes of "maculipennis" subgroup.
The interphase nucleus spatial organization has been a current problem. Internucleus architecture is provided by interactions of chromosomes with nuclear envelope and each other. Malaria mosquitoes are extremely useful for nucleus architecture investigation because their close related species differ by nurse cells chromosomes spatialorganization. The goal of our research is comparative analysis of DNA of XL chromosome attachment region of Anopheles messeae Fall. and chromosomes attachment regions sequence of «maculipennis» subgroup malaria mosquitoes (An. atroparvus Thiel., An. beklemishevi Steg. et Kab., An. maculipennis Mg. и An. melanoon Hackett.). XL chromosome An. messeae is connected with nuclear cover by region that is located in the middle of the chromosome arm. The benefit of this work is researching a region that is not pericentromeric. Therefore, the attachment region DNA analysis without pericentromeric region sequences (per se) is possible. DNA from XL chromosome attachment region of An. messeae nurse cells was separated with the help of microdissection and subsequent DOP-PCR amplification. Fluorescent in situ hybridization of this DNA with «maculipennis» subgroup malaria mosquitoes chromosomes revealed that XL chromosome attachment region of An. messeae contains the sequences including pericenromeric heterochromatin. We propose, decreasing the number of sites contained DNA from XL chromosome attachment region of An. messeae during subgroup forming. Moreover, in An. maculipennis и An. messeae conservative sequences decreasing in intercalary heterochromatin its accumulation can occur in chromosomes 2, 3R and XL pericentric α-heterochromatin.The sequences of XL chromosome attachment region of An. messeae and other mosquitoes chromosome regions with β-heterochromatin morphology, including chromosome without attachment regions, do not differ significantly. Probably, XL chromosome attachment region of An. messeae consists of repeated sequences of different classes: universal for heterochromatic regions and taking part in XL chromosome spatial organization. Homeiological to XL chromosome attachment region of An. messeae regions are located in the middle of the chromosome arm in ancestral species and even nearctic specimen - An. beklemishevi always. Therefore, An. messeae XL chromosomes with the attachment region in the middle of arm appearance are not connected with chromosomes rearrangements (e.g. inversion) but could be initiated through the DNA sequences reorganization. The transposition of transposable elements, containing SAR/MAR sequences, is one of the ways to create new chromosome attachment regions to nuclear envelope.
Keywords
пространственная организация ядра,
районы прикрепления хромосом к ядерной оболочке,
гетерохроматин,
малярийные комары,
Anopheles,
nucleus spatial organization,
chromosome attachment regions to the nucleus envelope,
heterochromatin,
malaria mosquitoes,
AnophelesAuthors
Artemov Gleb N. | National Research Tomsk State University | g_artemov@mail.ru |
Abilkasimova Gulnar M. | Institute of General Genetics and Cytology, Alma-Ata, Kazakhstan | iggc@mail.ru |
Stegniy Vladimir N. | National Research Tomsk State University | stegniy@res.tsu.ru |
Всего: 3
References
Girod P.A., Nguyen D.Q., Calabrese D. et al. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells // Nat. Methods. 2007. Vol. 4, № 9. P. 747-753.
Avramova Z., Tikhonov A., Chen M., Bennetzen J.L. Matrix attachment regions and structural colinearity in the genomes of two grass species // Nucleic Acids Res. 1998. № 26. P. 761-767.
Шарахова М.В., Стегний В.Н., Тимофеева О.В. Полиморфизм прицентромерного гетерохроматина политенных хромосом трофоцитов яичников в природных популяциях малярийного комара Anopheles messeae Fall. // Генетика. 1997. Т. 33, № 2. С. 281-283.
Grushko O.G., Sharakhova M.V., Stegnii V.N., Sharakhov I.V. Molecular organization of heterochromatin in malaria mosquitoes of the Anopheles maculipennis subgroup // Gene. 2009. № 448. P. 192-197.
Артемов Г.Н., Стегний В.Н. Молекулярно-генетический анализ районов прикрепления хромосом к оболочке ядра трофоцитов яичников малярийных комаров Anopheles комплекса «maculipennis» // Вестник Томского государственного университета. Биология. 2010. Т. 10, № 2. С. 123-131.
Стегний В.Н. Генетические основы эволюции малярийных комаров. I: Хромосомные филогенетические связи // Зоологический журнал. 1981. Т. 60, вып. 1. С. 69-77.
Стегний В.Н. Популяционная генетика и эволюция малярийных комаров. Томск : Изд-во Томского ун-та, 1991. 137 с.
Стегний В.Н. Архитектоника генома, системные мутации и эволюция. Новосибирск : Изд-во Новосиб. ун-та, 1993. 111 с.
Стегний В.Н. Инверсионный полиморфизм малярийного комара Anopheles messeae. IV. Стационарность частотного распределения инверсий по ареалу вида // Генетика. 1983. Т. 19, № 3. С. 466-473.
Lichter P., Ledbetter S.A., Ledbetter D.H., Ward D.C. Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines // Proc. Nat. Acad. Sci. USA. 1990. Vol. 87, № 17. P. 6634-6638.
Kumar V., Cornel A.J., Mukabayire O. In situ hybridization to Anopheles polytene chromosomes // Molecular Biology of Insect Disease Vectors: A Methods Manual. London : Chapman and Hall, 1997. P. 337-345.
Сайджафарова А.О., Артемов Г.Н., Карамышева Т.В. и др. Молекулярно-цитогенетическое изучение ДНК прицентромерного гетерохроматина хромосомы 2L у малярийного комара Anopheles beklemishevi (Culicidae, Diptera) // Генетика. 2009. Т. 45, № 1. С. 59-63.
Усов К.Е., Шелковникова Т.А., Вассерлауф И.Э., Стегний В.Н. Молекулярно-цитогенетический анализ прицентромерного гетерохроматина хромосом трофоцитов яичников у видов подгруппы Drosophila melanogaster // Цитология. 2008. Т. 50, № 12. С. 1044-1049.
Стегний В.Н., Сайджафарова А.О., Артемов Г.Н., Карамышева Т.В., Рубцов Н.Б. Сравнительный анализ молекулярного состава прицентромерного гетерохроматина политенных хромосом малярийных комаров рода Anopheles (CULICIDAE, DIPTERA) // Вестник Томского государственного университета. Биология. 2007. № 1. С. 96-105.
Грушко О.Г., Шарахова М.В., Шевченко А.И. и др. Характеристика и сравнительный анализ ДНК из прицентромерного гетерохроматина хромосомы 2 Anopheles atroparvus V. Tiel (Culicidae, Diptera) // Генетика. 2004. Т. 40, № 10. С. 1325-1334.
Стегний В.Н. Реорганизация структуры интерфазных ядер в онто- и филогенезе малярийных комаров // Доклады AН СССР. 1979. Т. 249, № 5. С. 1231-1234.
Куличков В.А., Жимулев И.Ф. Анализ пространственной организации геномов Drosophila melanogaster на основе данных по эктопической конъюгации политенных хромосом // Генетика. 1976. Т. 12, № 5. С. 81-89.
Steffensen D.M. Chromosome architecture and the interphase nucleus: Data and theory on the mechanism differentiation and determination // Chromosomes Today. Amsterdam : Elsevier, 1977. Vol. 6. P. 247-253.
Mahy N.L., Perry P.E., Bickmore W.A. Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH // The Journal of Cell Biology. 2002. Vol. 159, № 5. P. 753-63.
Meaburn K.J., Misteli T.J. Locus-specific and activity-independent gene repositioning during early tumorigenesis // The Journal of Cell Biology. 2008. Vol. 180, № 1. P. 39-50.
Rabl C. Über Zellteilung // Morphologisches Jahrbuch. 1885. P. 214.
Cremer T., Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells // Nature Reviews Genetics. 2001. Vol. 2, № 4. P. 292-301.