Computer system for analysis of molecular evolution modes of genes and proteins: a case study of the cyclin B molecular evolution | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2011. № 4 (16).

Computer system for analysis of molecular evolution modes of genes and proteins: a case study of the cyclin B molecular evolution

The evolution of protein-coding genes is characterized by two types of single-nucleotide substitutions: non-synonymous, altering protein structure, and synonymous, that does not change the protein. Natural selection of proteins is manifested through various non-synonymous fixations. Protein function, structure and folding are all determined by the combination of physicochemical properties of amino acids. To analyze the protein evolution mode two main approaches were previously introduced: (1) based on the calculation of the radical (large changes in certain physicochemical property) to conservative (small changes in certain physicochemical property) codon substitutions rate ratio (KR/KC), and (2) based on analysis of variance of rate changes of various physicochemical amino acid properties (VPC) in the course of protein evolution. The essential drawback of these approaches is the need to know in advance "positive change" of certain amino acid properties.Our novel computer system for protein evolution mode analysis is also based on the KR/KC and VPC, but has two crucial differences which allow us to overcome the drawback: (1) we take into account all the known properties of amino acids, and (2) we calculate the statistical relation of properties changes with certain adaptive phenotypical features of organisms. The opportunity to match evolutionary change of all amino acid properties with positively selected phenotypical features of organisms permits direct attribution of certain protein changes to selection events. On this basis, a computer system for analyzing of molecular evolution mode of genes and proteins was developed (http://pixie.bionet.nsc.ru/samem/). Our computer system consists of two main pipelines, analyzing the evolutionary modes of genes (I) and proteins (II), and two supplementary pipelines, collecting a sample of genes and proteins (III) and producing their primary analysis (IV). An essential feature of the gene analysis pipeline is a possibility to study gene evolution modes using different KR/KC calculation methods. Pipeline for protein analysis implements a novel algorithm for detection of atypical amino acids fixations on phylogenetic tree branches. This algorithm is based on Markov simulation of protein sequence evolution, and uses the permutation test for comparison of the simulated protein molecular evolution with real one.To test the capabilities of our computer system and performance of our novel algorithm for detection of atypical amino acids fixations on tree branches the molecular evolution of cyclin B protein family was analyzed. It was shown that the fixation of atypical amino acid substitutions is frequent to both cyclin paralogs B1 and B2 after cyclin B duplication in the vertebrate evolution. In contrast, only one of the duplicated cyclin B copies possessed of atypical amino acid fixations in a series of successive cyclin B duplications in the fungal evolution. Moreover, it was shown that the evolution of cyclins B3 subfamily, in contrast with cyclin B1 and B2 subfamilies, was strictly associated with increasing of animal's complexity. This association can be explained by the important role of cyclin B3 in the meiosis and, hence, in the mechanisms of reproductive isolation.

Download file
Counter downloads: 343

Keywords

молекулярная эволюция, консервативные и радикальные аминокислотные замены, система «клиент-сервер», статистический анализ, циклины B, molecular evolution, conservative and radical amino acid substitutions, client-server system, statistical analysis, cyclin B

Authors

NameOrganizationE-mail
Gunbin Konstantin V.Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirskgenkvg@bionet.nsc.ru
Genaev Mikhail A.Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirskmag@bionet.nsc.ru
Turnaev Igor I.Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirskturn@bionet.nsc.ru
Afonnikov Dmitry A.Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirskada@bionet.nsc.ru
Всего: 4

References

Berbee M.L., Taylor J.W. Dating the molecular clock in fungi - how close are we? // Fungal Biol. Rev. 2010. Vol. 24, № 1-2. P. 1-16.
Taylor J.W., Berbee M.L. Dating divergences in the Fungal Tree of Life: review and new analyses // Mycologia. 2006. Vol. 98, № 6. P. 838-849.
Budd G.E. The earliest fossil record of the animals and its significance // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008. Vol. 363, № 1496. P. 1425-1434.
Peterson K.J., Cotton J.A., Gehling J.G., Pisani D. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008. Vol. 363, № 1496. P. 1435-1443.
Benton M.J., Donoghue P.C. Paleontological evidence to date the tree of life // Mol. Biol. Evol. 2007. Vol. 24, № 1. P. 26-53.
Nguyen T.B., Manova K., Capodieci P. et al. Characterization and expression of mammalian cyclin b3, a prepachytene meiotic cyclin // J. Biol. Chem. 2002. Vol. 277, № 44. P. 41960-41969.
Refik-Rogers J., Manova K., Koff A. Misexpression of cyclin B3 leads to aberrant spermatogenesis // Cell Cycle. 2006. Vol. 5, № 17. P. 1966-1973.
Miles D.C., van den Bergen J.A., Sinclair A.H., Western P.S. Regulation of the female mouse germ cell cycle during entry into meiosis // Cell Cycle. 2010. Vol. 9, № 2. P. 408-418.
van der Voet M., Lorson M.A., Srinivasan D.G. et al. C. elegans mitotic cyclins have distinct as well as overlapping functions in chromosome segregation // Cell Cycle. 2009. Vol. 8, № 4. P. 4091-4102.
Оно С. Генетические механизмы прогрессивной эволюции. М. : Мир, 1973. 227 с.
Teichmann S.A., Babu M.M. Gene regulatory network growth by duplication // Nat. Genet. 2004. Vol. 36, № 5. P. 492-496.
Brandeis M., Rosewell I., Carrington M. et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero // Proc. Natl. Acad. Sci. U.S.A. 1998. Vol. 95, № 8. P. 4344-4349.
Wilson D., Pethica R., Zhou Y. et al. SUPERFAMILY - Comparative Genomics, Datamining and Sophisticated Visualisation // Nucleic Acids Res. 2009. Vol. 37, Database issue. P. D380-D386.
Hughes A.L. The evolution of functionally novel proteins after gene duplication // Proc. R. Soc. Lond. Ser. B Biol. Sci. 1994. Vol. 256, № 1346. P. 119-124.
Archambault V., Buchler N.E., Wilmes G.M. et al. Two-faced cyclins with eyes on the targets // Cell Cycle. 2005. Vol. 4, № 1. P. 125-130.
Vogel C., Chothia C. Protein Family Expansions and Biological Complexity // PLoS Comput. Biol. 2006. Vol. 2, № 5. P. e48.
Kolaczkowski B., Thornton J.W. A mixed branch length model of heterotachy improves phylogenetic accuracy // Mol. Biol. Evol. 2008. Vol. 25, № 6. P. 1054-1066.
Krauss V., Thummler C., Georgi F. et al. Near intron positions are reliable phylogenetic markers: an application to holometabolous insects // Mol. Biol. Evol. 2008. Vol. 25, № 5. P. 821-830.
Hou Z.C., Romero R., Wildman D.E. Phylogeny of the Ferungulata (Mammalia: Laurasiatheria) as determined from phylogenomic data // Mol. Phylogenet. Evol. 2009. Vol. 52, № 3. P. 660-664.
Murphy W.J., Pringle T.H., Crider T.A. et al. Using genomic data to unravel the root of the placental mammal phylogeny // Genome Res. 2007. Vol. 17, № 4. P. 413-421.
Kjer K.M., Honeycutt R.L. Site specific rates of mitochondrial genomes and the phylogeny of eutheria // BMC Evol. Biol. 2007. Vol. 7. P. 8.
Kitazoe Y., Kishino H., Waddell P.J. et al. Robust time estimation reconciles views of the antiquity of placental mammals // PLoS One. 2007. Vol. 2, № 4. P. e384.
Hallstrom B.M., Kullberg M., Nilsson M.A., Janke A. Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups // Mol. Biol. Evol. 2007. Vol. 24, № 9. P. 2059-2068.
Singh T.R., Tsagkogeorga G., Delsuc F. et al. Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny // BMC Genomics. 2009. Vol. 10. P. 534.
Swalla B.J., Smith A.B. Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008. Vol. 363, № 1496. P. 1557-1568.
Holland L.Z., Albalat R., Azumi K. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology // Genome Res. 2008. Vol. 18, № 7. P. 1100-1111.
Podsiadlowski L., Braband A., Struck T.H. et al. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea // BMC Genomics. 2009. Vol. 10. P. 364.
Roy S.W., Irimia M. Rare genomic characters do not support Coelomata: intron loss/gain // Mol. Biol. Evol. 2008. Vol. 25, № 4. P. 620-623.
Marletaz F., Le Parco Y. Careful with understudied phyla: the case of chaetognath // BMC Evol. Biol. 2008. Vol. 8. P. 251.
Helmkampf M., Bruchhaus I., Hausdorf B. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept // Proc. Biol. Sci. 2008. Vol. 275, № 1645. P. 1927-1933.
Lartillot N., Philippe H. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008. Vol. 363, № 1496. P. 1463-1472.
Philippe H., Brinkmann H., Martinez P. et al. Acoel flatworms are not platyhelminthes: evidence from phylogenomics // PLoS One. 2007. Vol. 2, № 1. P. e717.
Dopazo H., Dopazo J. Genome-scale evidence of the nematode-arthropod clade // Genome Biol. 2005. Vol. 6, № 5. P. R41.
Irimia M., Maeso I., Penny D. et al. Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata // Mol. Biol. Evol. 2007. Vol. 24, № 8. P. 1604-1607.
Wang H., Xu Z., Gao L., Hao B. A fungal phylogeny based on 82 complete genomes using the composition vector method // BMC Evol. Biol. 2009. Vol. 9. P. 195.
Minge M.A., Silberman J.D., Orr R.J. et al. Evolutionary position of breviate amoebae and the primary eukaryote divergence // Proc. Biol. Sci. 2009. Vol. 276, № 1657. P. 597-604.
Fitzpatrick D.A., Logue M.E., Stajich J.E., Butler G. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis // BMC Evol. Biol. 2006. Vol. 6. P. 99.
Hampl V., Hug L., Leigh J.W. et al. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic «supergroups» // Proc. Natl. Acad. Sci. U.S.A. 2009. Vol. 106, № 10. P. 3859-3864.
Yoon H.S., Grant J., Tekle Y.I. et al. Broadly sampled multigene trees of eukaryotes // BMC Evol. Biol. 2008. Vol. 8. P. 14.
Burki F., Shalchian-Tabrizi K., Minge M. et al. Phylogenomics reshuffles the eukaryotic supergroups // PLoS One. 2007. Vol. 2, № 8. P. e790.
Kanehisa M., Goto S., Furumichi M. et al. KEGG for representation and analysis of molecular networks involving diseases and drugs // Nucleic Acids Res. 2010. Vol. 38, Database issue. P. D355-D360.
Maddison D.R., Schulz K.-S. (eds.) 2007. The Tree of Life Web Project. URL: http://tolweb.org
Gunbin K.V., Afonnikov D.A., Kolchanov N.A. Molecular evolution of the hyperthermophilic archaea of the Pyrococcus genus: analysis of adaptation to different environmental conditions // BMC Genomics. 2009. Vol. 10. P. 639.
Pupko T., Sharan R., Hasegawa M. et al. Detecting excess radical replacements in phylogenetic trees // Gene. 2003. Vol. 319, P. 127-135.
Cell Cycle Regulation / ed. by Р. Kaldis. Berlin : Springer-Verlag, 2006. 374 p.
Nieduszynski C.A., Murray J., Carrington M. Whole-genome analysis of animal A- and B-type cyclins // Genome Biol. 2002. Vol. 3, № 12. P. RESEARCH0070.
Analysis of Phylogenetics and Evolution with R / ed. by Е. Paradis. N.Y. : Springer Science+Business Media, 2006. P. 133-183.
Smith Nick GC. Are radical and conservative substitution rates useful statistics in molecular evolution? // J. Mol. Evol. 2003. Vol. 57, № 4. P. 467-478.
Kawashima S., Pokarowski P., Pokarowska M. et al. AAindex: amino acid index database, progress report 2008 // Nucleic Acids Res. 2008. Vol. 36, Database issue. P. D202-D205.
Zhang J. Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes // J. Mol. Evol. 2000. Vol. 50, № 1. P. 56-68.
Gout J.F., Kahn D., Duret L. Paramecium Post-Genomics Consortium. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution // PLoS Genet. 2010. Vol. 6, № 5. P. e1000944.
Drummond D.A., Bloom J.D., Adami C. et al. Why highly expressed proteins evolve slowly // Proc. Natl. Acad. Sci. U.S.A. 2005. Vol. 102, № 40. P. 14338-14343.
Drummond D.A., Wilke C.O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution // Cell. 2008. Vol. 134, № 2. P. 341-352.
Vihinen M., Torkkila E., Riikonen P. Accuracy of protein flexibility predictions // Proteins. 1994. Vol. 19, № 2. P. 141-149.
Chou P.Y., Fasman G.D. Prediction of the secondary structure of proteins from their amino acid sequence // Adv. Enzymol. 1978. Vol. 47. P. 45-148.
Fisher D.L., Nurse P. A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins // EMBO J. 1996. Vol. 15, № 4. P. 850-860.
Bloom J., Cross F.R. Multiple levels of cyclin specificity in cell-cycle control // Nat. Rev. Mol. Cell Biol. 2007. Vol. 8, № 2. P. 149-160.
Мюллер Э., Леффлер В. Микология. М. : Мир, 1995. 343 с.
 Computer system  for analysis of molecular evolution modes of genes and proteins: a case study  of the cyclin B molecular evolution | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2011. № 4 (16).

Computer system for analysis of molecular evolution modes of genes and proteins: a case study of the cyclin B molecular evolution | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2011. № 4 (16).

Download file