Condition of the stomach mucous coat, pro- and antioxidant activity,and biochemical blood indices in rats fed with nano- or microparticlesof titanium dioxide
In chronic experiments on rats, the biological action of nano- or microparticles of titaniumdioxide (TiO2) was studied upon their supply through gastrointestinal tract. For7 days, test animals received with food 50 mg per rat (250 mg per kg of bodyweight) of aTiO2 powder. A procedure of titanium dioxide feeding was arranged in such a way as toprovide the controlled and physiological supply of TiO2 nano- or microparticles into thebody: every day at 10:00 a.m. the rats were placed into individual cages and given TiO2powder with an attractive food (20 cm2 sized pan-cake). The animals stayed in the individualcages until they ate up their food. Animals of the control series were also placedinto individual cages, but received the attractive food only.The study revealed that physiological supply of TiO2 nanoparticles (δ50 12 nm,Sspecif 95 m2/g) through gastrointestinal tract is accompanied by abnormalities in theformation and degradation of parietal mucous layer of the stomach, augmentation oferosion in the stomach mucous coat, and enhanced pro- and antioxidant activity of parietalmucus. These processes give rise to a toxic impact of TiO2 nanoparticles on thefunctional activity of protective mucous barrier and affect the functioning of stomach andthe entire digestive tract. Disturbance of the barrier function of parietal mucous layermay allow TiO2 nanoparticles to penetrate into internal environment of the body and initiatederangement in the functioning of various organs and systems. Investigation ofblood plasma chemiluminescence parameters demonstrated that supply of TiO2 nano- ormicroparticles into the body does not change the level of induced chemiluminescence inblood plasma, which characterizes the amount of free radicals. Antioxidant activity inblood plasma of rats fed with TiO2 nanoparticles increased starting from the 5th minuteof the reaction, whereas rats fed with TiO2 microparticles retained the control level ofantioxidant activity. This may result from a compensatory reaction of the organism tosupplying exactly the nanoparticles of titanium dioxide. Biochemical blood indices inrats receiving TiO2 nano- or microparticles demonstrate the absence of significant disturbancesin the tested systems of the body under the conditions of our experiment.Key words: nano- or microparticles of titanium dioxide (TiO2); rats; gastrointestinaltract; pro- and antioxidant activity; biochemical blood indices.
Keywords
Authors
Krivova Natalia A. | Tomsk State University | nakri@res.tsu.ru |
Zaeva Olga B. | Tomsk State University | nakri@res.tsu.ru |
Khodanovich Marina Ju. | Tomsk State University | Khodanovich@mail.tsu.ru |
Karelina Olga A. | Tomsk State University | nakri@res.tsu.ru |
Gul Elizaveta V. | Tomsk State University | elizaveta-gul@yandex.ru |
Zelenskaja Anna E. | Tomsk State University | an.zelenskaya@gmail.com |
Всего: 6
References
Wang J., Zhou G., Chen C. et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration // Toxicol. Lett. 2007. Vol. 168, № 2. P. 176-180.
White R., Rabin, Clarkson T., Irons R. et al. Space Exploration and Toxicology: A New Frontier // Fundam. Appl. Toxicol. 1994. № 22. P. 161-171.
Zhang J., Johnson P.C., Popel A.S. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows // Microvasc. Res. 2009. Vol. 77, № 3. P. 265-272.
Reeves J.F., Davies S.J., Dodd N.J.F., Jha A.N. Hydroxyl radicals (OH-) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells // Mutat. Res.-Fund. Mol. M., 2008. Vol. 640, № 1-2. P. 113.
Gurr J.-R., Wang A. S.S., Chen C.-H., Jan K.-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells // Toxicology. 2005. Vol. 213, № 1-2. P. 66-73.
Konaka R., Kasahara E., Dunlap W.C. et al. Ultraviolet irradiation of titanium dioxide in aqueous dispersion generates singlet oxygen // Redox Rep. 2001. № 6. P. 319-325.
Levin G.J. The antioxidant system of the organism. Theoretical basis and practical consequences // Med. Hypotheses. 1994. Vol. 42, № 4. P. 269-275.
Владимиров Ю.А. Свободные радикалы в биологических системах // Соросовский образовательный журнал. 2000. № 12. С. 13-19.
Кривова Н.А., Заева О.Б., Лаптева Т.А., Светличный В.А. Исследование взаимосвязей между составом гликопротеинов и антиоксидантной активностью пристеночной слизи желудочно-кишечного тракта // Российский физиологический журнал им. И.М. Сеченова. 2008. Т. 94, № 11. С. 1316-1334.
Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. и др. Окислительный стресс. Прооксиданты и антиоксиданты. М.: Слово, 2006. 556 с.
Бобров О.Е. Острые язвы пищеварительной тубки. Ч. 1. URL: www.critical.ru/actual/ bobrov/acute_ ulcers_1.htm
Хохоля В.П., Саенко В.Ф., Доценко В.П. Клиника и лечение острых язв пищеварительного канала. Киев: Здоровье, 1989. 167 c.
Кривова Н.А., Селиванова Т.И., Заева О.Б. Видовые особенности состава надэпителиального слизистого слоя пищеварительного тракта у крыс и мышей // Физиологический журнал им. И.М. Сеченова. 1994. Т. 80, № 8. С. 118-123.
Кривова Н.А., Дамбаев Г.Ц., Хитрихеев В.Е. Надэпителиальный слизистый слой желудочно-кишечного тракта и его функциональное значение. Томск: МГП «Раско», 2002. 316 с.
Owen R., Depledge M. Nanotechnology and the environment: Risks and rewards // Mar. Pollut. Bull. 2005. Vol. 50, № 6. P. 609-612.
Salomon M. Risks of synthetic nanomaterials for human health // Umweltmedizin in Forschung und Praxis. 2009. Vol. 14, № 1. P. 7-22.
Colvin V.L. The potential environmental impact of engineered nanomaterials // Nat. Biotechnol. 2003. Vol. 21, № 10. P. 1166-1170.
Warheit D.B., Webb T.R., Sayes C.M. et al. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon size and surface area // Toxicol. Sci. 2006. Vol. 91, № 1. P. 227-236.
Oberdorster G., White R., Rabin R. et al. Space Exploration and Toxicology: A New Frontier // Fundam. Appl. Toxicol. 1994. № 22. P. 61-171.
Liao C.-M., Chiang Y.-H., Chio C.-P. Assessing the airborne titanium dioxide nanoparticlerelated exposure hazard at workplace // J. Hazard. Mater. 2009. Vol. 162, № 1. P. 57-65.
Boffetta P., Soutar A., Cherrie J.W. et al. Mortality among workers employed in the titanium dioxide production industry in Europe // Cancer Causes Control. 2004. № 15. P. 697-706.
Fabian E., Landsiedel R., Ma-Hock L. et al. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats // Arch. Toxicol. 2008. V. 82, № 3. P. 151-157.
Zhang R., Niu Y., Li Y. et al. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice // Environ. Toxicol. Pharmacol. 2010. Vol. 30, № 1. P. 52-60.
Chen J., Dong X., Zhao J., Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection // J. Appl. Toxicol. 2009. Vol. 29, № 4. P. 330-337.
Wang J., Zhou G., Chen C., Yu H. et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration // Toxicology Letters. 2007. Vol. 168, is. 2. P. 176.
Warheit D.B., Webb T.R., Sayes C.M. et al. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon size and surface area // Toxicol. Sci. 2006. Vol. 91, №. 1. P. 227-236.
Afaq F., Abidi P., Matin R., Rahman Q. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide // J. Appl. Toxicol. 1998. № 18. P. 307-312.