The influence of thetitanium dioxide on some functions of central nervous system of rats
The perspective of developing technology of creating and using the nanomaterials(particle size up to 100 na-nometers) attracts a big attention nowadays. Nanoparticles oftitanium dioxide (TiO2) are counted among the most widely used nanoparticles. They areused for paper, paint, ceramics, food, medicines and cosmetic consumer quality refinement.Microsize titanium dioxide is considered as biologically inactive but action degreeof nanosize titanium dioxide remains unclear. It is known for animal nervous system tobe the most respondent to different exposures. The aim of present research was estimatingof neurotropic influence of nanosize titanium dioxide. To perform this an experimenton rats was conducted. Rats were receiving a piece of attractive food with addition offixed dose of nanosize TiO2 (250 mg/kg) for 7 days.Before and after experiment behavioral activity of rats was tested in "open field"(number of squares crossed, vertical exploratory activity, head dipping, defecation andurination, center square duration). Circadian rhythm of the total locomotion activity ofrats and dynamics of the locomotion activity during the whole experiment was carriedout using the day-night camera Axis 221. In addition, spectral analysis of EEG wasperformed. EEG was recorded in the parietal cortex in unanesthetized rats using 24-channel electroencephalograph "Entsefalan-131-03" (Medicom MTD", Taganrog) in thefrequency range from 0,16 to 70 Hz. It was found that microsize and nanosize TiO2 is expressedthe neurotropic effect. The microsize TiO2 increases the total motor activity, thespectral power of the main bands of the EEG rhythms of rats, but reduces the animal'ssensibility to stress and aggressive behavior. Dioxide, in contrast, reduces the totalmotor activity, spectral power of the main bands of the EEG rhythms without affectingthe aggressive behavior of animals and sensitivity to stress.
Keywords
rats,
behaviour,
microparticles,
nanoparticles,
titanium dioxide,
крысы,
поведение,
микрочастицы,
наночастицы,
диоксид титанаAuthors
Krivova Natalia A. | Tomsk State University | nakri@res.tsu.ru |
Khodanovich Marina Ju. | Tomsk State University | Khodanovich@mail.tsu.ru |
Zamoshchina Tatiana A. | Tomsk State University | beladona@hotmail.ru |
Tuhvatulin Ravil T. | Tomsk State University | |
Zaeva Olga B. | Tomsk State University | nakri@res.tsu.ru |
Suhanov Dmitry J. | Tomsk State University | nakri@res.tsu.ru |
Zelenskaja Anna E. | Tomsk State University | an.zelenskaya@gmail.com |
Gul Elizaveta V. | Tomsk State University | elizaveta-gul@yandex.ru |
Mikrjukova Anna V. | Tomsk State University | nakri@res.tsu.ru |
Всего: 9
References
Ливанов М.Н. Пространственная организация процессов головного мозга. М.: Наука, 1972. 181 с.
Замощина Т.А. Лития оксибутират и ритмическая структура активно-поискового поведения и температуры тела крыс в постоянных условиях освещения // Экспериментальная и клиническая фармакология. 2000. № 2. С. 12-15.
Амикишиева А.В. Поведенческое фенотипирование: современные методы и оборудование // Информационный вестник Всероссийского общества генетиков и селекционеров. 2009. Т. 13, № 3. С. 529-542.
Симонов П.В. Эмоциональный мозг. М.: Наука, 1981. 215 с.
Лоскутова Л.В., Дубровина Н.И. ГАМКb-рецепторы и амнезия мышей с альтернативными стереотипами поведения // Экспериментальная и клиническая фармакология. 2007. № 3. С. 10-12.
Rotenberg A., Muller P., Birnbaum D. et al. Seizure suppression by EEG-guided repetitive transcranial magnetic stimulation in the rat // Clinical Neurophysiology. 2008. Vol. 119. P. 2697-2702.
Лакин Г.Ф. Биометрия. М.: Высшая школа, 1990. 352 с.
Суханов Д.Я., Кривова Н.А., Ходанович М.Ю. Рекламно-техническое описание. Программа оценки двигательной активности крыс в ограниченном прямоугольном пространстве по цифровому видеоизображению «Mouse Express». Свидетельство ОФЕР- НиО № 15873 от 16.06.2010. Томск, 2010. 5 с.
Буреш Я., Бурешова О., Хьюстон Дж. Методики и основные эксперименты по изучению мозга и поведения. М.: Высшая школа, 1991. 399 с.
Кокаева Ф.Ф. Поведение как критерий поражающего действия техногенных загрязнений среды на организм животных и эффективности мер коррекции: Автореф. дис. ... д-ра биол. наук. М., 2006. 32 с.
Liao C.-M., Chiang Y.-H., Chio C.-P. Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace // Journal of Hazardous Materials. 2009. Vol. 162, № 1. Р. 57-65.
Dewsbury D.A. Comparative Animal Behavior. N.Y.: McGraw-Hill, 1978. 452 p.
Fabian E., Landsiedel R., Ma-Hock L. et al. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats // Archives of Toxicology. 2008. Vol. 82, № 3. Р. 151-157.
Zhang R., Niu Y., Li Y., Zhao C. et al. Acute toxicity study of the interaction between titanium dioxide nanoparticles and lead acetate in mice // Environmental Toxicology and Pharmacology. 2010. Vol. 30, № 1. Р. 52-60.
Warheit D.B., Webb T.R., Sayes C.M. et al. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon size and surface area // Toxicological Sciences. 2006. Vol. 91, № 1. P. 227-236.
Wang J.J., Sanderson B.J.S., Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells // Mutation Research. 2007. Vol. 628. P. 99-106.
Afaq F., Abidi P., Matin R. et al. Cytotoxicity, pro-oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxid // Toxicology. 1998. Vol. 18. Р. 307-312.
Karlsson H.L., Gustafsson J., Cronholm P., Moller L. Size-dependent toxicity of metal oxide particles - A comparison between nano- and micrometer size // Toxicology Letters. 2004. Vol. 188, № 2. P. 112-118.
Besov A.S., Krivova N.A., Vorontsov A.V., Zaeva O.B. et al. Air detoxification with nanosize TiO2 aerosol tested on mice // Journal of Hazardous Materials. 2010. Vol. 173. P. 40-46.
Yamamoto A., Honma R., Sumita M., Hanawa T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes // J. Biomed. Mater. Res. 2004. Part A. Vol. 68A, № 2. P. 244-256.
Salomon M. Risks of synthetic nanomaterials for human health // Umweltmedizin in Forschung und Praxis. 2009. Vol. 14, № 1. P. 7-22.
Jones C.F., Grainger D.W. In vitro assessments of nanomaterial toxicity // Advanced Drug Delivery Reviews. 2009. Vol. 61. P. 438-456.
Owen R., Depledge M. Nanotechnology and the environment: Risks and rewards // Marine Pollution Bulletin. 2005. Vol. 50, № 6. P. 609-612.