Changes in volume of mouse liver mitochondria after exposure to nanosecond pulsed-periodic microwave and x-rays | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2011. № 3 (15).

Changes in volume of mouse liver mitochondria after exposure to nanosecond pulsed-periodic microwave and x-rays

The effect of nanosecond pulse-periodic microwave (RPMs) and pulse-periodic Xrayson the liver mitochondria of mice was investigated. Isolated mitochondria frommouse liver were extracted by standard method of differential centrifugation. The mitochondrialsuspension irradiated 4000 microwave pulses (carrier frequency of 10 GHz,the pulse duration at half-power level of 100 ns, repetition rate of 10-22 pulses per second,the peak power density ranged from 70 to 1500 W/cm2) or pulse-periodic X-rays(the photon energy of 90120 keV, pulse duration of 4 ns, repetition rate of 10-22 pulsesper second, dose per pulse ranged from 0,3 to 2 mR per pulse, and the total absorbeddose of 80 mGy) were tested. The source RPMs used laboratory pulse generator basedon MI-505 magnetron, as a source of pulse-periodic X-rays served accelerator Sinus 150(Tomsk). As impact indicators used an optical density of the suspension of mitochondria,showing the volumetric characteristics of these organelles. It was revealed that after irradiationa volume of mitochondria in suspension may vary. Effect depended on the pulserepetition frequency, the intensity or dose of exposure, the nature of the factor, as well asthe absence or presence of calcium ions in the incubation medium. The effect of RPMsand X-rays irradiation of mitochondria in a calcium medium was significantly higher ascompared with calcium free incubation medium. It could be seen as reducing the volumeof mitochondria (in most cases) so their swelling after the exposure. The reasons for thedecline of volume of mitochondria could be breaks in the inner membrane of mitochondria.That breaks provided not compensated exit of ions from the matrix, which initiatedthe water outflow from the mitochondria. Swelling may be due to input cations (K+,Ca2+) through nonspecific pores in conformity with the electric field gradient. Cationsaccumulate in the matrix with the simultaneous accumulation of phosphate anion. It isknown that Ca2+ ions have a dual effect on the mitochondria function: a) stimulate oxidativeprocesses and b) open the pores in the mitochondrial nonspecific permeability. As aresult of this ions accumulation the osmotic pressure within mitochondria increases andit leads to the entrance of water into the mitochondria and swelling. This may be causedby the modulating influence of pulse-periodic microwave and X-rays on the sensitivity ofnonspecific permeability of mitochondria inner membrane to calcium ions.

Download file
Counter downloads: 350

Keywords

импульсно-периодические электромагнитные излучения, митохондрии, ионы кальция, repetitive pulsed electromagnetic radiation, mitochondria, calcium ions

Authors

NameOrganizationE-mail
Zharkova Lubov P.National Research Tomsk State UniversityZharkova_Lubov@mail.ru
Ivanov Vladimir V.Siberian State Medical University, Tomskiseivv@mail.ru
Knyazeva Irecle R.Siberian State Medical University, Tomskkir@rubl.tomsk.ru
Kereya Anna V.National Research Tomsk State Universitykereya21@mail.ru
Kutenkov Oleg P.Institute of High-Current Electronics of Siberian Division of Russian Academy of Sciences, TomskKutenkov@lfe.hcei.tsc.ru
Rostov Vladislav V.Institute of High-Current Electronics of Siberian Division of Russian Academy of Sciences, Tomskrostov@lfe.hcei.tsc.ru
Bolshakov Michael A.National Research Tomsk State Universitymbol@ngs.ru
Всего: 7

References

Пазялова А.А. Влияние микотоксинов боверицина и энниатина на функциональные системы митохондрий // Известия ПГПУ. 2007. № 3. С. 300-3007.
Николс Д. Биоэнергетика. Введение в хемиосмотическую теорию : пер. с англ. М. : Мир, 1985. 190 с.
Оливьер П.Дж., Сантос М.С., Узллас К.В. Тиолзависимые изменения неспецифической проницаемости и дыхания митохондрий, вызываемые доксорубицином // Биохимия. 2006. Т. 71, № 2. С. 247-254.
Brinkkoetter P-T., Song H., Loser R. et al. Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance // Cellular physiology and biochemistry. 2008. Vol. 22. P. 195-204.
Brookes P.S., Yoon Y., Robotham J.L., Anders M.W., Sheu S-S. Calcium, ATP, and ROS; a mitochondrial love-hate triangle // American Journal of Physiology. Cell Physiology. 2004. Vol. 287. P. 817-833.
Князева И.Р., Жаркова Л.П., Кутенков О.П., Ростов В.В., Большаков М.А. Изучение функционирования митохондрий после воздействия импульсно-периодических микроволнового и рентгеновского излучений // Тезисы докладов 21-го Съезда Физиологического общества им. И.П. Павлова. Москва ; Калуга, 2010. С. 276-277.
Жаркова Л.П., Афанасьев К.В., Большаков М.А., Князева И.Р., Ростов В.В. Оценка влияния импульсно-периодического рентгеновского и микроволнового излучений на биологические структуры с помощью измерения импедансных характеристик // Вестник Томского государственного университета. 2008. № 312. С. 180-183.
Crichton P.G., Parker N., Vidal-Puing A.J., Brand M.D. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein1 // Bioscience reports. 2009. Vol. 30(3). P. 187-192.
Брайловская И.В., Старков А.А., Мохова Е.Н. Индукция Ca2+-зависимой поры в митохондриях печени под действием аскорбата в присутствии низких концентраций ионов железа // Биохимия. 2001. Т. 66, № 8. С. 1117-1121.
Euroguide on the accommodation and care of animals used for experimental and other scientific purposes. (Based on the revised Appendix A of the European Convention ETS 123) FELASA: Federation of European Laboratory Animal Science Associations, London, UK. 2007. 17 с. URL: www.felasa.eu.
Pallotti F., Lenaz G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. // Methods Cell Biology. 2001. Vol. 65. P. 1-35.
Grafc U. Biochemistry of antibiotics // Berlin spectrum akademisher Verlag. 1992. P. 124-282.
Klimov A.I., Kovalchuk O.V., Rostov V.V., Sinyakov A.N. Measurement of Parameters of XBand High-Power Microwave Superradiative Pulses // IEEE Transactions on Plasma Science. 2008. Vol. 36, № 6. P. 1-4.
Жаркова Л.П., Мамонова Н.В., Князева И.Р., Кутенков О.П., Ростов В.В., Большаков М.А. Регенерация нейрогенных изъязвлений слизистой желудка после облучения импульсно-периодическим микроволновым излучением // Вестник Томского государственного университета. Биология. 2010. № 2. С. 112-122.
Артемов К.П., Ельчанинов А.А., Кутенков О.П., Ростов В.В., Турчановский И.Ю. Импульсно-периодический источник рентгеновского излучения // Приборы и техника эксперимента. 2004. № 5. С. 67-68.
Ефимов В.М., Ковалева В.Ю. Многомерный анализ биологических данных. 2-е изд., испр. и доп. СПб., 2008. 86 с.
Жаркова Л.П. Реализация окислительных процессов в печени и крови после кратковременного воздействия наносекундных импульсно-периодических электромагнитных излучений: Автореф. дис. ... канд. биол. наук. Томск, 2010. 24 с.
Жаркова Л.П., Князева И.Р., Иванов В.В., Большаков М.А., Кутенков О.П., Ростов В.В. Влияние импульсно-периодического рентгеновского и микроволнового излучений на уровень перекисей в изолированных гепатоцитах // Вестник Томского государственного университета. 2010. № 333. С. 161-163.
Adey W.R. Tissue interaction with nonionising electomagnetic fields // Physiology Review. 1981. Vol. 61(2). P. 435-514.
McCormack J.G., Denton R.M. Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy metabolism // Dev Neuroscience. 1993. Vol. 15. P. 165-173.
Das A.M., Harris D.A. Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents // Cardiovascular Research. 1990. Vol. 24. P. 411-417.
Mildaziene V., Baniene R., Nauciene Z. et al. Calcium indirectly increases the control exerted by the adenine nucleotide translocator over 2-oxoglutarate oxidation in rat heart mitochondria // Archives of Biochemistry and Biophysics. 1995. Vol. 324. P. 130-134.
Halestrap A.P., Brennerb C. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death // Current Medicinal Chemistry. 2003. Vol. 10. P. 1507-1525.
Gunter T.E., Yule D.I., Gunter K.K., Eliseev R.I., Salter J.D. Calcium and mitochondria // FEBS Letters. 2004. Vol. 567. P. 96-102.
 Changes in volume of mouse liver mitochondria after exposure to nanosecond pulsed-periodic microwave and x-rays | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2011. № 3 (15).

Changes in volume of mouse liver mitochondria after exposure to nanosecond pulsed-periodic microwave and x-rays | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2011. № 3 (15).

Download file