Optimization of illumination conditions in cultivation process of Solanum tuberosum L. cv. Lugovskoy microcuttings in vitro
The method of isolating apical meristems and obtaining from them virus-free regenerants is the main way to make potato plants free from pathogens. Further cultivation of the improved potato in hydroponics allows obtaining virus-free tubers, thereby solving the problems of modern seed-growing of this crop. The in vitro cultivation of micropropagated plants is carried out at artificial light. In this connection it is necessary to choose a light regime to optimize the growth processes of microcuttings. The effect of additional irradiated with red, white and blue light on the morphogenesis of potato cv. Lugovskoy in vitro was investigated. Different growth reactions of micropropagatedplantlets during subcultivation were revealed. The influence of the correction of white light on the formation of root, shoot and the photosynthetic apparatus of Solanum tuberosum L. cv. Lugovskoy plantlets in the process of cultivation in vitro was studied. The supplementary lighting with blue, red and white light was used. The greatest increase in dry weight of shoots was observed in plants under red light. At the same time, the blue light inhibited or changed the direction of synthetic processes in the shoot, causing a decrease in its dry biomass. Red light increased the root volume and the total area of leaves, compared with the action of the blue light. Irradiating with blue light increased the area of leaf surface 3-5 tiers, whereas irradiating with a white and red light - the area of 6-9 tiers, while the smallest number of tiers was formed under blue light conditions. The levels of chlorophyll a, chlorophyll b and carotenoids were increased at red and blue light compared with a content of pigments under white light. Red and blue light played an important photoregulation role in the growth and morphogenic responses of potato plants, both at the shoot and root system. Specific effect of light of different spectral composition on morphogenesis of microcuttings potato cv. Lugovskoy should be considered for optimizing cultivation regime in vitro. The practical significance of the research results is to use the method of irradiating with selective light at work to develop virus-free potato micropropagated plants with a view to accelerating the growth in vitro, the successful adaptation of plants in vivo, the reduction of the vegetation period and the increase in productive process for obtaining the maximum output of the improved minitubers in the conditions of hydroponics.
Keywords
Solanum tuberosum L,
микроклонирование,
красный свет,
синий свет,
фотосинтетические пигменты,
морфогенез,
Solanum tuberosum L,
micropropagation in vitro,
red light,
blue light,
photosynthetic pigments,
morphogenesisAuthors
Golovatskaya Irina F. | Tomsk State University | golovatskaya.irina@mail.ru |
Dorofeev Vyacheslav Yu. | Tomsk State University | dorofeev.v2012@yandex.ru |
Medvedeva Yulia V. | Tomsk State University | imerz@mail.ru |
Nikiforov Pavel E. | Tomsk State University | npe24@mail.ru |
Karnachuk Raisa A. | Tomsk State University | |
Всего: 5
References
Воскресенская Н.П. Принципы фоторегулирования метаболизма растений и регуля-торное действие красного и синего света на фотосинтез // Фоторегуляция метаболизма и морфогенеза растений / под ред. А.Л. Курсанова, Н.П. Воскресенской. М. : Наука, 1975. С. 16-36.
Воскресенская Н.П. Фоторегуляторные аспекты метаболизма растений // XXXVIII Тимирязевские чтения М. : Наука, 1979. 47 с.
ЛакинГ.Ф. Биометрия : учеб. пособие для биол. спец. вузов. М. : Высш. шк., 1990. 352 с.
LichtenthalerH.K. Chlorophyles and carotenoids: pigments of photosynthetic biomembranes // Methods in enzymology. 1987. Vol. 148. P. 350-382.
Дорофеев В.Ю., Медведева Ю.В., Карначук Р.А. Оптимизация светового режима при культивировании оздоровленных растений картофеля in vitro с целью повышения продукционного процесса // Материалы VI Москов. междунар. конгресса, ч. 1 (Москва, 21-25 марта 2011 г.). М. : ЗАО «Экспо-биохим-технологии», РХТУ им. Д.И. Менделеева, 2011а. С. 238-239.
Карначук Р.А., Дорофеев В.Ю., Медведева Ю.В. Фоторегуляция роста и продуктивности растений картофеля при размножении in vitro // VII Съезд Общества физиологов растений России, Междунар. конф. «Физиология растений - фундаментальная основа экологии и инновационных биотехнологий» 4-10 июля 2011 г. Н. Новгород, 2011. С. 313-314.
Головацкая И.Ф., Минич А.С., Минич И.Б. и др. Регуляция роста и развития растений Brassica oleracea L. с помощью коррекции солнечного излучения // Вестн. Том. гос. ун-та. Биология. 2012. № 2 (18). С. 151-165.
Карначук Р.А., Тищенко С.Ю., Головацкая И.Ф. Эндогенные гормоны и регуляция мор фогенеза Arabidopsis thaliana синим светом // Физиология растений. 2001. Т. 48, № 2. С. 262-267.
Карначук Р.А., Головацкая И.Ф. Гормональный статус, рост и фотосинтез растений, выращенных на свету разного спектрального состава // Физиология растений. 1998. Т. 45, вып. 6. С. 925-934.
Карначук Р.А., Постовалова В.М., Беленькая Е.В. и др. Фитохромный контроль мета болизма 14С-углеводов в растениях // Физиология растений. 1978. Т. 25. С. 268-271.
Симаков Е.А., Анисимов Б.В., Еланский С.Н. и др. Сорта картофеля, возделываемые в России: 2010. Ежегодное справочное издание. М. : Агроспас, 2010. 128 с.
Савина О.В. Некогерентный красный свет - экологически безопасный фактор воздействия на посадочный материал картофеля // Сб. науч. трудов Рязанского НИПТИ АПК. Рязань, 2005. С. 51-56.
Аксенова Н.П, Константинова Т.Н., Голяновская С.А. и др. Рост и клубнеобразование in vitro у трансгенного картофеля с суперэкспрессией фитохрома B // Физиология растений. 2002. Т. 49, № 4. С. 535-540.
Fischer L., Lipavska H., Hausman J.F., Opatrny Z. Morphological and Molecular Characterization of a Spontaneously Tuberizing Potato Mutant: An Insight into the Regulatory Mechanism of Tuber Induction // BMC Plant Biol. 2008. Vol. 8. P. 117-121.
Тихомиров А.А., Лисовский Г.М., Сидько Ф.Я. Спектральный состав света и продуктивность растений. Новосибирск : Наука, 1991. 168 с.
Casal J.J. Phytochromes, cryptochromes, phototropin: photoreceptor interaction in plants // Photochem. Photobiol. 2001. Vol. 71. P. 1-11.
Карначук Р.А., Негрецкий В.А., Головацкая И.Ф. Гормональный баланс листа растений на свету разного спектрального состава // Физиология растений. 1990. Т. 37, вып. 3. С. 527-534.
Головацкая И.Ф. Роль криптохрома 1 и фитохромов в регуляции фотоморфогенетических реакций растений на зеленом свету // Физиология растений. 2005. Т. 52, № 6. С. 822-829.
Symons G.M., Reid J.B. Interactions between light and planthormones during de-etiolation // J. Plant Growth Regul. 2003. Vol. 22. P. 3-14.
Головацкая И.Ф., Карначук Р.А., Ефимова М.В. и др. Роль криптохрома 1 и фитохромов А-Е в регуляции роста арабидопсиса на зеленом свету // Вестн. Том. гос. ун-та. 2007. № 297. С. 184-187.
Константинова Т.Н., Аксенова Н.П., Сергеева Л.И. и др. Взаимное влияние света и гормонов на регуляцию морфогенетических процессов в культуре in vitro // Физиология растений. 1987. Т. 34, № 4. С. 795-802.
Malec P., Yahalom A., ChamovitzA. Identification of a light-regulated protein kinase activity from seedlings of Arabidopsis thaliana // Photochem. Photobiol. 2002. Vol. 75. P. 178-183.
Folta K.M., Maruhnich S.A. Green light: a signal to slow down or stop // J. Exp. Bot. 2007. P. 1-13.
Аксенова Н.П., Константинова Т.Н., Голяновская С.А. и др. Гормональная регуляция клубнеобразования у картофеля // Физиология растений. 2012. Т. 59, № 4. С. 491-490.