The technique of channel deformations of the Western Siberia Rivers | Geosphere Research. 2016. № 1. DOI: 10.17223/25421379/1/10

The technique of channel deformations of the Western Siberia Rivers

The technique for estimating channel deformations is offered. The technique suggests selection of data from the long-term hydrological supervision, which corresponds to fixed water levels Hi (Hi=Hmin+i-AH, i=1,..., m; AH - a constant increment; Hmin - the minimal value of a water level). If there is no fixed value of water level Hi, then values of parameters of a stream are interpolation between nearest dates. Then for each data selection, values of amplitude and standard deviations for width and maximum depth are determined at a fixed water level Hi. To evaluate vertical deformations, the top limit of the greatest standard deviation of the maximum stream depth ob(hmax) is used, whereas the top limit of the greatest standard deviation of a stream width ob(B) is used for evaluation of horizontal deformations. To calculate upper limit of the standard deviation, the formula is used: ob2 = s2-(N-1) /^1-02, where a-a significance value; N - volume of sample; tf-i-an - a percentage point of distribution s2 - an estimation of a dispersion. The significance value should be 5 % taking into account maximum allowed error for defining water discharge with some tools. To prove the technique, channel measurements on the Chulym river in the Asino town (tributary of the Ob river, Western Siberia, Tomsk region) were analyzed. The channel measurements were taken during 2001-2006. It is shown that ratio of ob and the module of the maximum annual erosion velocity at a significance value of 5 % equals 0,97 for horizontal deformations, and 0,82 for vertical deformations in the research area of the Chulym river in Asino (for 29 cross-sections). Using obtained results, values of horizontal and vertical channel deformations have been adjusted or defined for Vasjugan river at Maisk (ob(B) =4,3 m/year; ob(hmax) =0,32 m/year), Erkal-Nadei-Pur river at Khalesovoy (ob(B) =24,4 m/year; ob(hmax) =1,71 m/year), and Chuchja river at Chuchie (ob(B) =96,0 m/year; ob(hmax) =1,96 m/year). The mentioned rivers are generally typical for taiga (Vasjugan river), forest-tundra (Erkal-Nadej-Pur river) and tundra zones (Chuchja river) in Western Siberia. Their characteristics can be used for calculation of channel deformations of hydrologi-cally unexplored rivers in Western Siberia, which belong to a corresponding category, as well as for construction of pipeline and motorway connections (in a similar environment including the same type of channel process) using following formulas: Ziim = Zmin - oj(hmax) - Sn, ABt = T-(ob(B) + SB), where Sb and Sh - errors of measurement of width and depth of a stream; Zmin -the minimum mark of a bottom; Zlim - extremely possible vertical washout of a channel; ABr -greatest possible horizontal channel deformations; T- the projected period.

Download file
Counter downloads: 107

Keywords

вертикальные и горизонтальные русловые деформации, Западная Сибирь, vertical and horizontal river channel deformations, Western Siberia

Authors

NameOrganizationE-mail
Savichev Oleg G.Tomsk Polytechnic UniversityOSavichev@mail.ru
Всего: 1

References

Chang H.H. Fluvial Processes in River Engineering. Malabar ; Florida : Krieger publishing company, 2008. 432 p.
Savichev O.G., Reshetko M.V., Matveenko I.A., Ivanova Ye.V. Evaluation of plain river channel deformation in the absence of observation data // IOP Conf. Series: Earth and Environmental Science. 2015. № 24. P. 1-6. doi:10.1088/1755-1315/24/1/012027.
Савичев О.Г. Водные ресурсы Томской области. Томск : Изд-во Том. политехн. ун-та, 2010. 248 с.
Учёт деформаций речных русел и берегов водоёмов в зоне переходов магистральных трубопроводов (нефтегазопроводов). ВСН 163-83. М. : Госкомгидромет, 1985. 142 с.
Учёт руслового процесса на участках подводных переходов трубопроводов через реки. Стандарт организации. СТО ГУ ГГИ 08.29-2009. СПб. : Нестор-История, 2009. 184 с.
Чалов Р.С. Руслоформирующие расходы воды // Вестник Московского государственного университета. Сер. 5. География. 2006. № 1. С. 11-19.
Чалов Р.С. Почему размываются берега рек // Соросовский образовательный журнал. 2000. № 6. С. 99-106.
Ресурсы поверхностных вод СССР. Т. 15. Алтай и Западная Сибирь. Вып. 2. Средняя Обь. Л. : Гидрометеоиздат, 1972. 408 с.
Рождественский А.В., Чеботарёв А.И. Статистические методы в гидрологии. Л. : Гидрометеоиздат, 1974. 424 с.
Льготин В.А., Савичев О.Г., Нигороженко В.Я. Состояние поверхностных водных объектов, водохозяйственных систем и сооружений на территории Томской области в 2000-2005 гг. Томск : Томскгеомониторинг, 2006. 88 с.
Рекомендации по оценке и прогнозу размыва берегов равнинных рек и водохранилищ для строительства. ПНИИИС Госстроя СССР. М. : Стройиздат, 1987. 72 с.
Определение основных гидрологических характеристик. СП 33-101-2003. М. : Госстрой России, 2004. 72 с.
Девдариани А.С. Математический анализ в геоморфологии. М.: Недра, 1967. 156 с.
Земцов В.А., Вершинин Д.А., Крутовский А.О., Каменсков Ю.И. Русловые и пойменные процессы рек Сибири. Томск : ТМЛ-Пресс, 2007. 182 с.
 The technique of channel deformations of the Western Siberia Rivers | Geosphere Research. 2016. № 1. DOI: 10.17223/25421379/1/10

The technique of channel deformations of the Western Siberia Rivers | Geosphere Research. 2016. № 1. DOI: 10.17223/25421379/1/10

Download full-text version
Counter downloads: 1489