Statistical estimation of typochemical features of quartz of granite pegmatis
A significant amount of genetic information on the evolution of the granitic-pegmatite system was obtained by studying quartz. Modern ideas about the quartz's typochemysm are determined by the structural features of the mineral, as well as by the chemical elements that make up the solid and gas-liquid inclusions. The object of the research was quartz from pegmatites of different formations: crystalline, rare-metal, rare-earth (amazonite) and miarolic from Pamir, Altai, western Tian Shan. 30 impurity elements (excluding lantanoids) were found in quartz from pegmatites. 90-95 % of overall weight fall on Li, Mn, Ti, Zn, Sr, Ba, Rb, Cs and around 1 % on rare-earth elements. To assess distribution patterns of impurity elements in quartz, a regressive meta-analysis of data and the Box-Cox method of transformation were applied. Calculations of the linear Pearson correlation coefficient have shown that there is a correlation relationship between 27 pairs of elements. Basically, these connections have positive dependencies. Negative correlation is typical for (Ti4+-Ge4+), (Ge4+-Sr2+), (Ti4+-Li+ ), (Ti4+-Al3+). The results of canonical analysis showed that the presence of Li and Ge on 91 % affects the presence of B, Al and Ti in quartz. It is established that the schemes of heterovalent isomorphism in quartz are confirmed by the positive correlation of the elements (for example, ((B3+-Li+ ),(Al3+-Na+ ), etc.) The presence of Ga, Ge, B, Al, Sn, and others in quartz is possible only in the presence of alkali metals, especially Na. The inverse relationship between Ge and Ti, which can enter the quartz structure in place of Si by isovalent substitution scheme, is controlled by Li and Na. These elements in the pegmatite system serve as a geochemical criterion determining the presence of Ti or Ge in the quartz structure The content in quartz of Ti and Ge, their ratio (Ge/Ti) is considered as an indicator of differentiation of the acid melt (0.033 and 0.309 for quartz from biotite granites and aplite) [Jacamon, 2009]. The values of Ge/Ti in quartz of pegmatites, as late differentiates of acid melt, vary in wide aisles (for crystalline quartz 0.266, for quartz of rare-metal pegmatites of the Mandal field up to 1.124). Ge/Ti ratio in quartz of micaceous pegmatites is 0.001. A mineralogical criterion (based on quartz) for determining the formational affiliation of pegmatites was developed. The nature of the distribution of impurity elements in quartz makes it possible to distinguish two fields according to the geochemical criterion: a certain and an uncertain separation of pegmatites of different formations. Individuals from rare-metal pegmatites and miarolic pegmatites (zones with Li-mineralization quartz-elbaite and quartz-albite-lepidolite mineral aggregates) fall into the fields of confident separation. Quartz from rare-metal paragenetic associations has increased contents of rare alkalis (Cs, Rb), as well as Ba, Mn, Sn.
Keywords
ICP-MS кварца пегматитов,
типохимизм кварца,
структурные дефекты кварца,
корреляционный анализ,
кластерный анализ,
ICP-MS quartz pegmatites,
quartz chemistry,
structural defects of quartz,
correlation analysis,
cluster analysisAuthors
Bukharova Oksana V. | Tomsk State University | getina@ggf.tsu.ru |
Marfin Alexander E. | Institute of the Earth's Crust SB RAS | marfin1309@gmail.com |
Всего: 2
References
Миароловые пегматиты. Гранитные пегматиты / В.Е. Загорский, И.С. Перетяжко, Б.М. Шмакин. Новосибирск : Наука, 1999. Т. 3. 488 с
Светова Е.Н., Светов С.А., Данилевская Л.А. Редкие и редкоземельные элементы в кварце как индикаторы условий ми-нералообразования // Труды Карельского научного центра РАН. 2012. № 3. C. 137-144
Смирнов С.З. Флюидный режим магматического этапа развития редкометальных гранитно-пегматитовых систем, обогащенных фтором и бором: петрологические следствия : дис. ... д-ра геол.-минерал. наук. Новосибирск, 2015. 556 с
Anovitz L.M., Anovitz L.M., Cole D.R., Jackson A.J., Rother G., Littrell K.C., Allard L.F., Wesolowski D.J. Effect of quartz overgrowth precipitation on the multiscale porosity of sandstone: a (U) SANS and imaging analysis // Geochimica et Cosmochimica Acta. 2015. V. 158. P. 199-222
Ayensu A. Electron irradiation damage effects in hydrothermal grown quartz crystals // Journal of Applied Science & Technology. 2013. V. 18. Р. 27-34
Beurlen H., Muller A., Silva D., Da Silva M.R.R. Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast // Mineralogical Magazine. 2011. V. 75, № 5. P. 2703-2719
Breiter K., Muller A., Andreas K. Trace elements and growth patterns in quartz: a fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krusne hory Mts., Czech Republic) // Bulletin of the Czech Geological Survey. 2002. V. 77, № 2. P. 135-145
Flem B., Larsen R.B., Grimstvedt A., Mansfeld J. In situ analysis of trace elements in quartz by using laser ablation inductively coupled plasma mass spectrometry // Chemical Geology 2002. V. 182. P. 237-247
Frigo C., Stalder R., Hauzenberger C.A. OH defects in quartz in granitic systems doped with spodumene, tourmaline and/or apatite: experimental investigations at 5-20 kbar // Physics and Chemistry of Minerals. 2016. V. 43, № 10. P. 717-729
Gotze J. Chemistry, textures and physical properties of quartz-geological interpretation and technical application // Mineralogical Magazine. 2009. V. 73, № 4. P. 645-671
Gotze J., Mockel R Quartz: Deposits, mineralogy and analytics. Springer Science & Business Media, 2012. 360 p
Gotze J., Plotze M., Graupner T., Hallbauer D.K., Bray C.J. Trace element incorporation into quartz: a combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography // Geochimica et Cosmochimica Acta. 2004. V. 68, № 18. P. 3741-3759
Gyeabour A.I., Owusu A. Speciation and phase separation of water in quartz // Journal of Applied Science & Technology. 2016. V. 21, № 1-2. Р. 1-14
Hossain M.Z. The use of box-cox transformation technique in economic and statistical analyses // Journal of Emerging Trends in Economics and Management Sciences. 2011. V. 2, № 1. P. 32-39
Jacamon F. The significance of textures and trace element chemistry of quartz with regard to the petrogenesis of granitic rocks // Doctoral theses at NTNU. 2006. V. 155. P. 122
Jacamon F., Larsen R.B. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation // Lithos. 2009. V. 107, № 3. P. 281-291
Kostova B., Pettke T., Driesner T., Petrov P., Heinrich C.A. LA ICP-MS study of fluid inclusions in quartz from the Yuzhna Pe-trovitsa deposit, Madan ore field, Bulgaria // Swiss Bulletin of Mineralogy and Petrology. 2004. V. 84, № 1. P. 25-36
Larsen R.B., Flem B., Dundas S., Lahaye Y., Mansfeld J. LA-HR-ICP-MS analysis of quartz and principles governing the distribution and speciation of strcutural impurities in igneous quartz // Report Geological Survey of Norway. 2000. Р. 81
Larsen R.B., Henderson I., Ihlen P.M., Jacamon F. Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South // Contributions to Mineralogy and Petrology. 2004. V. 147, № 5. P. 615-628
Lin J.S., Payne M.C., Heine V., McConnell J.D. Ab-initio calculations on (OH) 4 defects in a-quartz // Physics and Chemistry of Minerals. 1994. V. 21, № 3. P. 150-155
Morteani G., Eichinger F., Tarantola A., Muller A., Gotze J., Sfragulla J. A. The synorogenic pegmatitic quartz veins of the Guacha Corral Shear zone (Sierra de Comechingones, Argentina): A textural, chemical, isotopic, cathodoluminescence and fluid inclusion study // Chemie der Erde-Geochemistry. 2016. V. 76, № 3. P. 391-404
Muller A., van den Kerkhof A.M., Behr H.J., Kronz A., Koch-Muller M. The evolution of late-Hercynian granites and rhyolites documented by quartz-a review // Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 2009. V. 100, № 1-2. P. 185-204
Muller A., Wiedenbeck M., van den Kerkhof A.M., Kronz A., Simon K. Trace elements in quartz-a combined electron micro-probe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study // European Journal of Mineralogy. 2003. V. 15, № 4. P. 747-763
Reimann C., Filzmoser P., Garrett R.G. Factor analysis applied to regional geochemical data: problems and possibilities // Applied Geochemistry. 2002. V. 17, № 3. P. 185-206
Rossman G.R., Weis D., Wasserburg G.J. Rb, Sr, Nd and Sm concentrations in quartz // Geochimica et cosmochimica Acta. 1987. V. 51, № 9. P. 2325-2329
Stenina N.G. Water-related defects in quartz // Bull. Geosci. 2004. V. 79, № 4. P. 251-268
Usami T., Toyoda S., Bahadur H., Srivastava A.K., Nishido H. Characterization of the E 1' center in quartz: Role of aluminum hole centers and oxygen vacancies // Physica B: Condensed. 2009. V. 404, is. 20. P. 3819-3823
Weil J.A. A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz // Physics and Chemistry of Minerals. 1984. V. 10, № 4. P. 149-165