Marginal reversal in marginal zone of mafic-ultramafic layered intrusions, insights from the Mazhalyk peridotite-gabbro intrusion (South-Eastern Tuva) | Geosphere Research. 2020. № 3. DOI: 10.17223/25421379/16/2

Marginal reversal in marginal zone of mafic-ultramafic layered intrusions, insights from the Mazhalyk peridotite-gabbro intrusion (South-Eastern Tuva)

Marginal zones of igneous bodies are the first products of magma crystallization produced during the initial stage of magma emplacement into magma chambers. This stage is very important for petrological studies of intrusive rocks, but still remains, however, insufficiently understood. The progress in its understanding is significantly hampered by the paucity of critical observations on the marginal zones of igneous bodies. To fill this gap, we have undertaken a detailed petrographic, geochemical and especially mineralogical study of marginal zones of the Mazhalyk peridotite-gabbro layered intrusion (South-Eastern Tuva, Russia). The study has resulted in observations that provide new constraints on and insights into the processes operating at magma chamber margins during the initial filling, subsequent crystallization and solidification of basaltic magma chambers. The rocks of marginal zone of Mazhalyk intrusion become more primitive from the base upwards as exemplified by a significant increase in whole-rock MgO (from 2,9 to 10 wt. %), Mg-number (from 41 to 57 %), and normative An-content (from 80 to 95 %) whereas all incompatible components reveal an upward decrease, e.g. TiO2 (from 0,32 to 0,15 wt. %), Na2O (from 1,82 to 0,1 wt. %), P2O5 (from 0,04 to 0,01 wt. %). The reverse trends are also evident from an upward increase in the An-content of plagioclase (from 81 to 91 %) and Mg-number of clinopyroxene (from 70 to 83 %) and amphibole (from 62 to 79 %). The marginal zone ends abruptly at the base of the Layered Series. The boundary between these two major units is a sharp break in terms chemical composition, mineral composition and crystallization sequence. The marginal zone can thus be viewed as an example of an aborted reversal. The Layered Series of the Mazhalyk intrusion show inward decreases in whole-rock MgO, Mg-number, and normative An-content as expected from normal fractional crystallization. A major result of this study is that the formation of the marginal reversal of the Mazhalyk intrusion was from inflowing magmas which become more primitive in composition with time. The data indicate that filling of the chamber started with evolved liquids that likely represent the leading fractionates of parental basaltic magma that crystallized against sidewalls of a deep conduit system or in deep magma chamber. Then inflowing magmas become more primitive (have higher MgO) and marginal zone crystallizing from such inflowing magmas acquires features of a typical marginal reversal, with rocks and minerals becoming more primitive in composition inwards. This is followed by a new major influx of a primitive magma that terminates the development of a marginal reversal and restarts crystallization with more primitive mineral and rock compositions of the Layered Series. This results in the formation of a sharp compositional break of the Layered Series with the underlying rocks of marginal reversal.

Download file
Counter downloads: 98

Keywords

Authors

NameOrganizationE-mail
Egorova Vera V.V.S. Sobolev Institute of Geology and Mineralogy SB RASverae@igm.nsc.ru
Shelepaev Roman A.V.S. Sobolev Institute of Geology and Mineralogy SB RASrshel@igm.nsc.ru
Всего: 2

References

Бородина Е.В., Егорова В.В., Изох А.Э. Петрология ордовикских коллизионных расслоенных перидотит-габбровых массивов (на примере Мажалыкского интрузива, Юго-Восточная Тыва) // Геология и геофизика. 2004. № 9. С. 1074-1091
Волохов И.М., Иванов В.М., Арнаутов Н.В. Мажалыкский габбро-пироксенит-перидотитовый плутон (Восточный Танну-Ола, Тува). Проблемы петрологии ультраосновных и основных пород. М. : Наука, 1972. С. 130-145
Кузьмичев А.Б. Тектоническая история Тувино-Монгольского массива: раннебайкальский, позднебайкальский и раннека-ледонский этапы. М. : Пробел-2000, 2004. 191 с
Aarnes I., Podladchikov Yu.Y., Neumann E.-R. Post-emplacement melt flow induced by thermal stresses: Implications for differentiation in sills // Earth and Planet Science Letters. 2008. V. 276. P. 152-166
Alapieti T.T. The Koillismaa layered igneous complex, Finland- its structure, mineralogy and geichemistry, with emphasis on the distribution of chromium // Geological Survey of Finland. 1982. Bulletin 319. 116 p
Ariskin A.A., Yaroshevsky A.A. Crystallization differentiation of intrusive magmatic melt: Development of a convection-accumulation model // Geochemistry International. 2006. V. 44. P. 72-93
Ariskin A.A., Barmina G.S. COMAGMAT: development of a magma crystallization model and its petrologic applications // Geo-chemical Intern. 2004. V. 42 (Suppl. 1): S1-157 A
Bedard J.H.J. The development of compositional and textural layering in Archaean komatiites and in Phanerozoic komatiitic basalts from Cape Smith, Quebec, Canada // Parson I. (ed.) Origin of Igneous Layering. Dordrecht : D. Reidel, 1987. Р. 399-418
Bhattacharji S. Scale model experiments on flowage differentiation on sills // Wyllie P.J. (ed.) Ultramafic and Related Rocks. N.Y. : Wiley, 1967. P. 69-70
Bhattacharji S., Smith, C.H. Flowage differentiation // Science. 1964. V. 14. P. 150-153
Boudreau A.E., Philpotts A.J. Quantitative modeling of compaction in the Holyoke flood basalt flow, Hartford Basin, Connecticut // Contribution to Mineralogy and Petrology. 2002. V. 144. P. 176-184
Campbell I.H. Some problem with the cumulate theory // Lithos. 1987. V. 11. P. 311-323
Chistyakova S.Yu., Latypov R.M. On the development of internal chemical zonation in small mafic dykes // Geological Magazine. 2010. V. 147. P. 1-12
Chistyakova S.Yu., Latypov R.M. Two independent processes responsible for compositional zonation in mafic dykes of the Aland-Aboland Dyke Swarm, Kestio Island, SW Finland // Lithos. 2009. V. 112. P. 382-396
Egorova V.V., Volkova N.I., Shelepaev R.A., Izokh A.E. The lithosphere beneath Sangilen Plateau, Siberia: evidence from peri-dotite, pyroxenite and gabbro xenoliths from alkaline basalts // Mineralogy and Petrology. 2006. V. 88 (3-4). P. 419-441
Egorova V., Latypov R.M. Mafic-ultramafic sills: new insights from M- and S-shaped mineral and whole-rock compositional profiles // Journal of Petrology. 2013. V. 54 (10). P. 2155-2191
Egorova V., Latypov R.M. Prolonged magma emplacement as a mechanism for the origin of marginal reversal of the Fongen-Hyllingen layered intrusion, Norway // Geological Magazine. 2012a. V. 53. P. 1-18
Egorova V., Latypov R.M. Processes operating during the initial stage of magma chamber evolution: insights from marginal reversal of the Imandra Layered Intrusion, Russia // Journal of Petrology. 2012b. V. 53 (1). P. 3-26
Foland K.A., Gibb F.G.F., Henderson C.M.B. Pattern of Nd and Sr isotopic ratios produced by magmatic and postmagmatic processes in the Shiant Isles Main Sill, Scotland // Contribution to Mineralogy and Petrology. 2000. V. 139. P. 655-671
Frenkel M.Ya., Yaroshevsky A.A., Ariskin A.A., Barmina G.S., Koptev-Dvornikov E.V., Kireev B.S. Convective-cumulative model simulating the formation process of stratified intrusions // Magma-Crust Interactions and Evolution. Theophrastus Publ., 1989. P. 3-88
Galerne C.Y., Neumann E.-R., Aarnes I., Planke S. Magmatic differentiation processes in saucer-shaped sills: Evidence from the Golden Valley Sill in the Karoo Basin, South Africa // Geosphere. 2010. V. 6. P. 163-188
Gibb F.G.F., Henderson C.M.B. Chemistry of the Shiant Isles Main Sill, NW Scotland, and wider application for petrogenesis of mafic sills // Journal of Petrology. 2005. V. 47. P. 191-230
Gorring M.L., Naslund H.R. Geochemical reversals within the lower 100 m of the Palisades sill, New Jersey // Contribution to Mineralogy and Petrology. 1995. V. 119. P. 263-276
Helz R.T., Kirschenbaum H., Marinenko J.W. Diapiric transfer of melt in Kilauea Iki lava lake, Hawaii: A quick, efficient process of igneous differentiation // Geolog. Soc. Am. Bull. 1989. V. 101. P. 578-94
Henderson C.M.B., Gibb F.G.F., Foland K.A. Mineral fractionation and pre- and post-emplacement processes in the uppermost part of the Shiant Isles Main Sill, SW Scotland // Trans R. Soc. Edinb. (Earth Sci.). 2000. V. 77. P. 325-347
Huang F., Lundstrom C.C., Glessner, J., Ianno A., Boudreau, A., Li J., Ferre E.C., Marshak S., Defrates J. Chemical and iso-topic fractionation of wet andesite in a temperature gradient: experiments and models suggesting a new mechanism of magma differentiation // Geochem et Cosmochim Acta. 2009. V. 73. P. 729-749
Irvine T.N. Magmatic infiltration metasomatism, double diffusive fractional crystallization and adcumulus growth in the Muskox Intrusion and other layered intrusions // Physics of Magmatic Processes / ed. by R.B. Hargraves. Princeton, NJ : Princeton University Press, 1980. P. 325-383
Jaupart C., Tait S. Dynamic of differentiation in magma reservoirs // Journal of Geophysical Research. 1995. V. 100 (17). P. 617636
Latypov R.M. The origin of marginal compositional reversals in basic-ultrabasic sills and layered intrusions by Soret fractionation // Journal of Petrology. 2003. V. 44. P. 1579-1618
Latypov R.M. Basal reversals in mafic sills and layered intrusions // Layered intrusions. Springer, 2015. P. 259-295
Latypov R.M., Egorova V.V. Plagioclase compositions give evidence for in situ crystallization under horizontal flow conditions in mafic sills // Geology. 2012. V. 40. P. 883-886
Latypov R.M., Hanski E., Lavrenchuk A., Huhma H., Havela T. A "three-increase model" for origin of marginal reversal in the Koitelainen layered intrusion, Finland // Journal of Petrology. 2011. V. 52. P. 733-764
Latypov R.M., Chistyakova S.Yu., Alapieti T.T. Revisiting the problem of chilled margins associated with marginal reversals in mafic-ultramafic intrusive bodies // Lithos. 2007. V. 99. P. 178-206
Lundstrom C.C., Boudreau A., Huang F., Ianno A.J. Magma differentiation in T gradient: thermal migration and Soret effects are not dead! Goldschmidt Conference Abstracts, Geochem et Cosmochim Acta, 2007. A602
Marsh B.D. On convective style and vigor in sheet-like magma chambers // Journal of Petrology. 1989. V. 30. P. 479-530
Marsh B.D. Solidification fronts and magmatic evolution // Mineralogy Magazine. 1996. V. 60. P. 5-40
MillerJ.D., Ripley E.M. Layered intrusions of the Duluth Complex, Minnesota, USA // Cawthorn R.G. (eds.). Layered Intrusions. Developments in Petrology. Elsevier Science B. 1996. V. 15. P. 257-301
Moore J., Evans B. The role of olivine in the crystallization of prehistoric lava lake, Hawaii // Contribution to Mineralogy and Petrology. 1967. V. 15. P. 202-223
Morse S.A. Plagioclase An range and residual porosity in igneous cumulates of the Kiglapait intrusion // Journal of Petrology. 2012. V. 53 (5). P. 891-918
Morse S.A. Kiglapait geochemistry II: Petrography // J. Petrol. 1979. V. 20. P. 591-624
Morse S.A. Kiglapait geochemistry IV: The major elements // Geochem et Cosmochim Acta. 1981. V. 45. P. 461-479
Raedeke L.D., McCallum I.S. Investigations in the Stillwater complex: Part II. Petrology and petrogenesis of the ultramafic series // Journal of Petrology. 1984. V. 25. P. 395-420
Tait S., Jaupart C. The producing of chemically stratified and adcumulate plutonic igneous rocks // Mineralogical Magazine. 1996. V.60. P. 99-114
Tyson R.M., Chang L.L.Y. The petrology and sulfide mineralization of the Partridge River troctolite, Duluth Complex, Minnesota // Canadian Mineralogist. 1984. V. 22. P. 23-38
Wager L.R., Brown G.M. Layered Igneous Rocks. Edinburgh: Oliver & Boyd. 1968. 588 p
Wilson J.R., Engell-Serensen O. Basal reversals in layered intrusions: evidence for emplacement of compositionally stratified magma // Nature. 1986. V. 326. P. 616-618
 Marginal reversal in marginal zone of mafic-ultramafic layered intrusions, insights from the Mazhalyk peridotite-gabbro intrusion (South-Eastern Tuva) | Geosphere Research. 2020. № 3. DOI: 10.17223/25421379/16/2

Marginal reversal in marginal zone of mafic-ultramafic layered intrusions, insights from the Mazhalyk peridotite-gabbro intrusion (South-Eastern Tuva) | Geosphere Research. 2020. № 3. DOI: 10.17223/25421379/16/2

Download full-text version
Counter downloads: 449