V-NB-W-bearing rutile from Karalveem gold deposit as a potential indicator for ore deposits | Geosphere Research. 2020. № 3. DOI: 10.17223/25421379/16/4

V-NB-W-bearing rutile from Karalveem gold deposit as a potential indicator for ore deposits

The Karalveem gold deposit is part of the Karalveem ore field and is located 18 km west of the Bilibino city (Chukotka Autonomous Area, Russia). Gold mineralization is located in the Triassic sedimentary rocks and gabbro-dolerites. Ores are represented by two types: quartz veins and metasomatic rocks after gabbro-dolerite. The paper presents the results of the study of accessory rutile from both ore types of the Karalveem deposit. It has been determined that the formation of gold-bearing metasomatic rocks and quartz veins took place at the stage of hydrothermal transformation of gabbro-dolerites, with the formation of the ore association of minerals such as arsenopyrite, pyrite, chalcopyrite, rutile, cobaltin, glaucodot, sphalerite, marcasite, native gold and galena. Mineralogical and petrographic studies have shown that the rutile replaces ilmenite (the primary mineral from gabbro-dolerites), forms individual crystals and their assemblages in association with quartz, carbonates (calcite, dolomite) and sulfides (pyrite, chalcopyrite, sphalerite), and fills the interstitials between arsenopyrite grains. Raman spectroscopy has been used to diagnose the crystal structure of rutile of both ore types. The spectra of the studied minerals show distinct peaks at 240, 445, and 611 cm-1, which are similar to those for rutile from the RRUFF database (http://rruff.info). Rutile crystals in both ore types are characterized by a heterogeneous internal structure, which is related to variations in the concentrations of trace elements. A feature of the chemical composition of the rutile in both ore types is the presence of tungsten (up to 5- 8 wt. % WO3), niobium (up to 4 wt. % Nb2O5), iron (up to 3 wt. % FeO) and vanadium (up to 1 wt. % V2O5) The incorporation of W6+ and Nb5+ into the structure of rutile is balanced by the presence of Fe3+ and V3+, and most likely V4+, according to the following heterovalent isomorphism schemes [Urban et al., 1992; Scott, Radford, 2007; Reznitsky et al., 2016]: (1) (Fe, V, Cr, Al)3+ + (Nb, Sb, Ta) 5+ <=> 2Ti4+ (2) (Fe, V, Cr, Al)3+ + W6+ <=> 3Ti4+ (3) V4+ <=> Ti4+ The presence of V4+ in the composition of rutile from the Karalveem ores suggests that hydrothermal solutions were relatively oxidized. The presence of tungsten and niobium is typical for the mineral of gold deposits in the world [Graham, Morris, 1973;Harris, 1989; Urban et al., 1992; Rice et al., 1998; Clark, Williams-Jones, 2004; Scott, Radford, 2007; Mironov et al., 2008; Scott et al., 2011; Agangi et al., 2019]. It was determined that rutile can be used for prospecting and exploration of new gold deposits in northeastern Russia, since the mineral is a typical accessory mineral of the Karalveem ores and always contains the tungsten, niobium and vanadium admixtures.

Download file
Counter downloads: 111

Keywords

Authors

NameOrganizationE-mail
Maksarov Ruslan A.АО «Karalveem mine»maksarovr2010@mail.ru
Doroshkevich Anna G.V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Science; Geological Institute SB RAS; National Research Tomsk State Universitydoroshkevich@igm.nsc.ru
Prokopyev Ilya R.V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Science; Novosibirsk National Research State Universityprokop@igm.nsc.ru
Redin Yury O.V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Scienceredin@igm.nsc.ru
Potapov Vladislav V.Novosibirsk National Research State University; V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciencevladislavpotapovjobmail@yandex.ru
Всего: 5

References

Миронов А.Г., Карманов Н.С., Миронов А.А., Ходырева Е.В. Золото-браннеритовые самородки в россыпи Озернинского рудного узла (Бурятия) // Геология и геофизика. 2008. Т. 49, № 10. С. 984-989
Оперативный подсчет запасов по золоторудному месторождению Каральвеем по состоянию на 01.01.2017 г. ОАО «Рудник Каральвеем». Билибино ; Москва, 2017
Резницкий Л.З., Скляров Е.В., Суворова Л.Ф., Бараш И.Г., Карманов Н.С. V-Cr-Nb-W-содержащий рутил из метаморфических пород слюдянского комплекса (Южное Прибайкалье) // ЗРМО. 2016. № 4. С. 61-79
Соболев Н.В., Логвинова А.М., Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В., Козьменко О.А., Рагозин А.Л. Nb рутил из микроксенолита эклогита кимберлитовой трубки Загадочная, Якутия // Доклады Академии наук. 2011. Т. 439, № 1. С. 102105
Agangi A., Reddy S.M, Plavsa D., Fougerouse D., Clark C., Roberts M., Johnson T.E. Antimony in rutile as a pathfinder for orogenic gold deposits // Ore Geology Reviews. 2019. V. 106. Р. 1-11
Aurisicchio C., De Vito C., Ferrini V., Orlandi P. Nb and Ta oxide minerals in the Fonte del Prete granitic pegmatite dike, Island of Elba, Italy // Can. Mineral. 2002. V. 40. P. 799-814
Belkasmi M., Cuney M., Pollard P.J., Bastoul A. Chemistry of the Ta-Nb-Sn-W oxides minerals from the Yichum rare metal granite (SE China): genetic implications and comparison with Moroccan and French Hercynian examples // Mineralogical Magazine. 2000u. V. 64 (3). P. 507-523
Cerny P., Chapman R., Simmons W.B., Chackowsky L.E. Niobian rutile from the McGurire granitic pegmatite, Park Country, Colorado: solid solution, exsolution, and oxidation // Am. Mineral. 1999. V. 84. P. 754-763
Cerny P., Novak M., Chapman R., Ferreira K.J. Subsolidus behavior of niobian rutile from the Pisek region, Czech Republic: a model for exsolution in W- and Fe2+»Fe3+-rich phases // Journal of Geosciences. 2007. V. 52. P. 143-159
Chebotarev D.A., Doroshkevich A.G., Klemd R., Karmanov N.S. Evolution of Nb-mineralization in Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk territory, Russia) // Periodico di Mineralogia. 2017. V. 86. P. 99-118
Clark J.R., Williams-Jones A.E. Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-projeсt SC2. Montreal, 2004. Р. 17
Doroshkevich A.G., Wall F., Ripp G.S. Calcite-bearing dolomite carbonatite dykes from Veseloe, North Transbaikalia, Russia and possible Cr-rich mantle xenoliths // Mineralogy and Petrology. 2007. V. 90. P. 19-49
Graham J., Morris R.C. Tungsten- and antimony-substituted rutile // Mineralogical Magazine. 1973. V. 39. P. 470-473
Green T.H., Adam J. Experimentally-determined trace element characteristics of aqueous fluid from partially dehydrated mafic oceanic crust at 3.0 GPa, 650-700°C // Eur. Jour. Mineral. 2003. V. 15. P. 815-830
Haggerty S.E. Oxide mineralogy of the upper mantle // Oxide minerals: petrologic and magnetic significance. Mineralogical society of Amer. 1991. V. 25. P. 355-416
Harris D.C. The mineralogy and geochemistry of the Hemlo gold deposit, Ontario // Geological Survey of Canada Economic Geology Report. 1989. V. 38. 88 p
Horng W.S., Hess P.C. Partition coefficients of Nb and Ta between rutile and anhydrous haplogranite melts // Contrib Mineral Petrol. 2000. V. 138. P. 176-185
Klemme S., Prowatke S., Hametner K., Gunther D. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones // Geochim Cosmochim Acta. 2005. V. 69. P. 2361-2371
Meinhold G. Rutile and its applications in earth sciences // Earth-Science Reviews 2010. V. 102. P. 1-28
Michailidis K.M An EPMA and SEM study of niobian-tungstenian rutile from the Fanos aplitic granite, central Macedonia, northern Greece // Neues Jahrbuch fur Mineralogie, Monatshefte. 1997. V. 12. P. 549-563
Okrusch M, Hock R., Schussler U., Brummer A., Baier M., Theisinger H. Intergrown niobian rutile phases with Sc- and W-rich ferrocolumbite: an electron microprobe and Rietveld study // American Mineralogist. 2003. V. 88. P. 986-995
Rice C., Darke K., Still J. Tungsten-bearing rutile from the Kori Kollo gold mine Bolivia // Mineralogical Magazine. 1998. V. 62. P. 421-429
Scott K.M., Radford N.W., Hough R.M., Reddy S.M. Rutile compositions in the Kalgoorlie Goldfields and their implications for exploration // Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia. 2011. V. 58 (7). P. 803-812
Scott K.M., Radford N.W. Rutile compositions at the Big Bell Au Deposit as a guide for Exploration // Geochemistry: Exploration, Environment, Analysis. 2007. V. 7. P. 353-361
Urban A.J., Hoskins B.F., Grey I.E. Characterization of V-Sb-W-bearing rutile from the Hemlo gold deposit, Ontario // Canadian Mineralogist. 1992. V. 30. P. 319-326
 V-NB-W-bearing rutile from Karalveem gold deposit as a potential indicator for ore deposits | Geosphere Research. 2020. № 3. DOI: 10.17223/25421379/16/4

V-NB-W-bearing rutile from Karalveem gold deposit as a potential indicator for ore deposits | Geosphere Research. 2020. № 3. DOI: 10.17223/25421379/16/4

Download full-text version
Counter downloads: 446