Analysis of climatic extremity since the 1950s in the Mountain Altai Territory
Indices related to air temperature show strong tendency to change. There has been an increase in the frequency of warm days and nights and a decrease in cool days and nights. Extreme changes in temperature are mostly stronger at night than during the day. On the other hand, for a group of indices valuable for agriculture and crop production, no significant changes have been received. Also, an annual count of days when daily precipitation is more than 10 mm and 20 mm (R10mm, R20mm), and simple daily intensity index (SDII) have no trend. Regarding the maximum 5-day precipitation total (r5d), the highest repeatability relates to July. In 70-75 % of cases, during the 5 consecutive days, there is a day on which the highest daily precipitation falls in a year; in other cases, these events are separated in time. The amount of heavy rainfall in a year is up to 26 % of the annual rainfall. Consecutive wet days index (period where the daily precipitation amount is more than 1 mm for at least consecutive 5 days) is small from April to October and about 6 days. The repeatability of such index has maximum in June-July and August-September. The length of the period with a total precipitation of not more than 1 mm per day is up to 14 days, with a maximum frequency in April. Within the area under study, at the beginning of the warm period the same predisposition to the formation of both wet and dry conditions has been noted. Such instability favors the display of extreme weather events. The computed values of r5d, r1d, SDII, R10mm, R20mm and R95p indices for both stations were determined as a feature space for clustering according to k-means iterative algorithm. As the objects, the years have been chosen. The division are separated into four groups, then stability was assessed through the Q factor "minimum variance in the group", pointed to "below average", "normal", "above average" and "anomaly". Since 1996, the inter-annual variability of values in the feature field has been increasing, changing its position from "below average" to "above average" and "anomaly", and bypassing the "normal" seen in 1995-2000 and 2006-2013. The substantial extreme indicators in the precipitation regime are the periods with/without precipitation, defined by CWD and CDD (wet and dry spell) indices, respectively. The most probable wet months for the formation of a durable wet period with precipitation of more than 1 mm per day are April and July. In April and September there is a high probability of both dry and wet months. Consequently, the most unstable situation in the precipitation regime is related to in April.
Keywords
Authors
Kuzhevskaia Irina V. | National Research Tomsk State University | ivk@ggf.tsu.ru |
Nechepurenko Olga E. | National Research Tomsk State University | o.e.nechepurenko@gmail.com |
Chursin Vladislav V. | National Research Tomsk State University | skriptym@mail.ru |
Hiroshi Matsuyama | Tokyo Metropolitan University | matuyama@tmu.ac.jp |
Всего: 4
References
Адаменко М.М., Гутак Я.М. Новый подход к дифференциации малых ледников и многолетних снежников на основе длительности непрерывного существования гляциально-нивального объекта (на примере гор Кузнецкого Алатау) // Геосферные исследования. 2017. № 3. C. 33-40
Волкова М.А., Огурцов Л.А. Пространственно-временная структура экстремальных годовых значений температуры воздуха и атмосферных осадков на севере Западной Сибири // Арктика. XXI век. 2015. № 1 (2). С. 56-61
Волкова М.А., Чередько Н.Н., Кусков А.И. Температурные риски и оценка вероятности их возникновения на территории Алтайского края и республики Алтай // Вестник Томского государственного университета. 2012. № 355. С. 148-153
Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации. М. : Росгидромет, 2014. С. 1004
Галахов В.П., Нарожнев Ю.К., Никитин С. А. и др. Ледники Актру (Алтай). Л. : Гидрометеоиздат, 1987. 119 с
Золина О.Г., Булыгина О.Н. Современная климатическая изменчивость характеристик экстремальных осадков в России // Фундаментальная и прикладная климатология. 2016. Т. 1. С. 84-103
Козлова Д. С. Экстремальные климатические явления в температурном режиме и режиме осадков на территории г. Барнаула // Педагогическое образование на Алтае. 2014. № 2. С. 6-8
Кошкин Д. А., Кочугова Е. А. Индикация изменения климата в терминах индексов экстремальности температуры воздуха и их связь с изменениями атмосферной циркуляции на территории Предбайкалья // Ученые записки. Электронный научный журнал Курского государственного университета. 2011. № 17. С. 271-278
Ленская О.Ю., Быков Д.В. Анализ изменчивости месячных сумм осадков с использованием индексов атмосферной циркуляции // Вестник Челябинского государственного университета. 2008. № 17. С. 53-62
Обобщающий доклад. Вклад рабочих групп I, II, III в Четвертый доклад об оценке Межправительственной группы экспертов по изменению климата / под ред. Р.К. Пачури, А. Райзингер. Женева : МГЭИК, 2007. С. 104
Нарожный Ю.К. Внешний массообмен ледников Актру: методика наблюдений, тенденции изменения и климатическая обусловленность // Вестник Томского государственного университета. 2001. № 274. С. 13-21
Немировская Л.Г., Климов О.В. Некоторые результаты исследований изменчивости и экстремальности регионального климата (на примере изучения определенных характеристик увлажнения) для юго-востока Западной Сибири // Интерэкспо Гео-Сибирь. 2014. Т. 4, № 2. С. 112-116
Огурцов Л.А., Чередько Н.Н., Волкова М.А., Журавлев Г.Г. Динамика показателей экстремальности климата на территории Западной Сибири // Оптика атмосферы и океана. 2016. Т. 29, № 8. С. 633-639
ВМО-№ 100. Руководство по климатологической практике. Женева, 2014. 158 с
ВМО-№ 49. Технический регламент. Сборник основных документов № 2. Т. I: Общие метеорологические стандарты и рекомендуемая практика. Женева, 2015. 71 с
Шумихина А.В. Динамика режима осадков в Удмуртской Республике и их связь с индексами атмосферной циркуляции // Географический вестник=Geographical bulletin. 2017. № 1 (40). С. 73-85
Benestad R.E., Haugen J.E. On complex extremes: Flood hazards and combined high spring-time precipitation and temperature in Norway // Clim. Chang. 2007. V. 85. P. 381-406
Bevacqua E., Maraun D., Vousdoukas M. I., Voukouvalas E., Vrac M., Mentaschi L., Widmann M. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change // Science Advances. 2019. V. 5, № 9. P. 1-7
Biasutti M., Seager R., Kirschbaum D.B. Landslides in West Coast metropolitan areas: the role of extreme weather events // Weather and Climate Extremes. 2016. V. 14. P. 67-79
Zhou B., Xu Y., Wu J., Dong S., Shi Y. Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset // Int. J. Climatol. 2016. V. 36. P. 1051-1066
Christidis N., Stott P.A. Attribution analyses of temperature extremes using a set of 16 indices // Weather and Climate Extremes. 2016. V. 14. P. 24-35
Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Cambridge ; New York : Cambridge University press, 2014. P. 1322
Fischer E.M., Beyerle U., Knutti R. Robust spatially aggregated projections of climate extremes // Nature Climate Change. 2013. V. 3, № 12. P. 1033-1038
Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation // Geneva. 2009. WCDMP-№ 72, WMO/TD-№ 1500
Halimatou T., Traore K., Kyei-Baffour N. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Segou in Mali from 1961-2014 // Weather and Climate Extremes. 2017. V. 18. P. 8-16
Hao Z., Singh V.P., Hao F. Compound extremes in hydroclimatology: a review. Water, 2018. 718 p
Heim R.R. An overview of weather and climate extremes - products and trends // Weather Clim. Extrem. 2015. V. 10. P. 1-9
Ikeuchi H., Hirabayashi Yu., Yamazaki D., Muis S., Ward P.J., Winsemius H.C., Verlaan M., Kanae S. Compound simulation of fluvial floods and storm surges in a global coupled river-coast flood model: model development and its application to 2007 Cyclone Sidr in Bangladesh // J. Adv. Model. Earth Syst. 2017. V. 9. P. 1847-1862
Leng G., Tang A., Huang S., Zhanga X., Cao J. Assessments of joint hydrological extreme risks in a warming climate in China // Int. J. Climatol. 2016. V. 36. P. 1632-1642
Ren F. M., Trewin B., Brunet M., Dushmanta P., Walter A., Baddour O., Korber M.A. Research progress review on regional extreme events // Advances in Climate Change Research. 2018. V. 9, № 3. P. 161-169
Sanderson B. M., Xu Y., Tebaldi C., Wehner M., Neill B., Jahn A., Pendergrass A.G., Lehner F. et al. Community Climate Simulations to assess avoided impacts in 1.5°C and 2°C futures // Earth System Dynamics Discussions. 2017. V. 8. P. 827-847
Schiermeier Q. Models hone picture of climate impacts // Nature. 2012. V. 482, № 7385. P. 286
Sedlmeier K., Feldmann H., Schadler G. Compound summer temperature and precipitation extremes over central Europe // Theoretical and Applied Climatology. 2017. V. 131. P. 1-9
Seneviratne S. I., Nicholls N., Easterling D., Goodess C. M., Kanae S., Kossin J., Luo Y., Marengo J. et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge ; New York : Cambridge University Press, 2012. P. 109-230
Sillmann J., Kharin V. V., Zhang X., Zwiers F.W., Bronaugh D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate // Journal of Geophysical Research Atmospheres. 2013. V. 118, № 4. P. 1716-1733
Wahl T., Jain S., Bender J. et al. Increasing risk of compound flooding from storm surge and rainfall for major US cities // Nature Clim. Change. 2015. V. 5. P. 1093-1097
Wahl T., Plant N.G., Long J.W. Probabilistic assessment of erosion and flooding risk in the northern Gulf of Mexico // J. Geophys. Res. Oceans. 2016. V. 121. P. 3029-3043
Zhang X., Yang F. RClimDex (1.0) user manual, Climate Research Branch, Environment Canada. 2004. 23 p