River flow hydrograph simulation in the Western Siberia lowland north for the extreme flood flow prediction based on the HBV-Light model | Geosphere Research. 2020. № 4. DOI: 10.17223/25421379/17/9

River flow hydrograph simulation in the Western Siberia lowland north for the extreme flood flow prediction based on the HBV-Light model

The purpose of this work is to study the possibility of predicting the flow hydrographs of the Arctic rivers (including maximum discharges of snowmelt and rain floods) and estimating the maximum water discharges of a given probability of exceedance on a basis of the conceptual model HBV-light. The calculations were performed for the rivers Poluy, Nadym, Pur, Taz, etc. In total, the processes of runoff formation from nine basins were modeled. The area of the smallest river basin of the Pravaya Hetta River at Pangody is 1200, and the largest basin of the Taz River at the settlement of Sidorovsk is 100,000 km2 in area. Prediction of runoff hydrographs in the HBV-light model consists of the preparation of initial data and the selection of model parameters that allow calculating the daily runoff depth based on daily air temperature and precipitation at the nearest weather stations. In this work, the division of catchments into altitude and landscape zones was not carried out. A standard model structure was chosen without taking into account the specifics of land use in the basin. The parameters were obtained for a whole area of each model catchment, without its detailing. Calibration of model parameters for rivers shows that the relatively simple conceptual model HBV-light reproduces well the intra-annual dynamics of runoff, including water discharge during the flood period. The accuracy of reproducing the hydrographs of the northern rivers runoff is not inferior to the accuracy of more complex deterministic models due to the lack of a sufficiently dense network of hydrometeorological observations and the need to determine the numerous parameters of more complex deterministic models. Manual calibration of the model parameters makes it possible to meaningfully use the HBV-light model for regional modeling of the elements of the water cycle and flow hydrographs. In this case, six individual parameters for each basin and nine general regional parameters are determined, reflecting the similarity of landscape conditions throughout the study area. The individual parameters include: TT, FC, LP, K1, K2, MAXBAS. It is shown that the values of each of the other nine parameters of the model can be set the same for the entire study area, that is, they have a regional character, which makes it possible to calculate runoff hydrographs, including the maximum water discharge of ungauged and poorly studied rivers. In general, the obtained model quality criteria for the period of calibration and validation of the models are quite high, and some models could, under certain conditions, be used to assess the change in river runoff induced by the climate change, as well as in the longer time period. Peak flood due to snowmelt is modeled better than peaks due to rainfall floods. Therefore, for basins with high model performance, a comparison of empirical probability distribution functions shows a good agreement between the observed and modeled values of the maximum flood flow rates over the entire amplitude of their fluctuations.

Download file
Counter downloads: 95

Keywords

Western Siberia, Arctic rivers, flow hydrograph simulation, maximum water discharge, the HBV-light model

Authors

NameOrganizationE-mail
Kopysov Sergey G.Tomsk State Universitywosypok@mail.ru
Zemtsov Valerii A.Tomsk State Universityzemtsov_v@mail.ru
Matsuyama HiroshiTokyo Metropolitan Universityyamahoshi@mvg.biglobe.ne.jp
Eliseev Artem O.Tomsk State Universitykuzoller@gmail.com
Всего: 4

References

Автоматизированная информационная система государственного мониторинга водных объектов. URL: https://gmvo.skniivh.ru/ (дата обращения: 27.04.2019)
Базы данных Всероссийского научно-исследовательского института гидрометеорологической информации - Мирового центра данных (ВНИГМИ-МЦЦ). URL: http://aisori.meteo.ru/ClimateR (дата обращения: 27.04.2019)
Бураков Д. А. Гидрологический анализ весеннего половодья в лесной зоне Западно-Сибирской равнины // Вопросы географии Сибири. 1978. Вып. 10. С. 69-89
Второй оценочный доклад Росгидромета об изменениях климата и их последствиях на территории Российской Федерации. М. : Росгидромет, 2014. С. 1004
Георгиевский Ю.М., Шаночкин С.В. Гидрологические прогнозы. СПб. : Изд-во РГГМУ, 2007. 436 с
Гидрология заболоченных территорий зоны многолетней мерзлоты Западной Сибири / ред. С.М. Новиков. СПб. : ВВМ, 2009. 536 с
Гусев Е.М., Насонова О.Н., Джоган Л.Я., Айзель Г.В. Моделирование формирования стока рек и снежного покрова на севере Западной Сибири // Водные ресурсы. 2015. Т. 42 (4). С. 387-395
Карнацевич И.В., Мезенцева О.В., Тусупбеков Ж. А., Бикбулатова Г.Г. Возобновляемые ресурсы тепловлагообеспечен-ности Западно-Сибирской равнины и динамика их характеристик. Омск : Изд-во Омского аграрного ун-та, 2007. 268 с
Магрицкий Д.В., Повалишникова Е.С., Фролова Н.Л. История изучения стока воды и водного режима рек Арктической зоны России в XX в. и начале XXI в. // Арктика и Антарктика. 2019. № 3. С. 61-96
Макарьева О.М., Нестерова Н.В., Бельдиман И.Н., Лебедева Л. С. Актуальные проблемы гидрологических расчетов в арктической зоне Российской Федерации и сопредельных территориях распространения многолетней мерзлоты // Проблемы Арктики и Антарктики. 2018. Т. 64 (1). С. 101-118
Паромов В.В., Земцов В.А., Копысов С.Г. Климат Западной Сибири в фазу замедления потепления (1986-2015 гг.) и прогнозирование гидроклиматических ресурсов на 2021-2030 гг. // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. Т. 328 (1). C. 62-74
Романов А.В. Развитие системы прогнозирования наводнений в Российской Федерации. Часть 2. Специфика изменений // Гидрометеорологические исследования и прогнозы. 2018. № 1 (367). С. 39-63
Руководство по гидрологической практике. Т. II: Управление водными ресурсами и практика применения гидрологических методов. СПБ. : Изд-во ВМО, 2012. № 168. 321 с
Alfieri L., Bisselink B., Dottori F., Naumann G., de Roo A., Salamon P., Wyser K., Feyen L. Global projections of river flood risk in a warmer world // Earth's Future. 2017. V. 5. P. 171-182
Bergstrom S., Forsman A. Development of a conceptual deterministic rainfall-runoff model // Nordic Hydrology. 1973. V. 4 (3). P. 147-170
Hrachowitz M., Savenije H.H.G., Bloschl G., McDonnell J.J., Sivapalan M., Pomeroy J.W., Arheimer B., Blume T., Clark M.P., Ehret U., Fenicia F., Freer J.E., Gelfan A., Gupta H.V., Hughes D.A., Hut R.W., Montanari A, Pande S., Tetz-laff D., Troch P.A., Uhlenbrook S., Wagener T., Winsemius H.C., Woods R.A., Zehe E., Cudennec C. A decade of Predictions in Ungauged Basins (PUB) - a review // Hydrological Sciences Journal. 2013. V. 58 (6). P. 1198-1255
Montanari A., Young G., Savenije H.H.G., Hughes D.A., Wagener T., Ren L.L., Koutsoyiannis D., Cudennec C., Toth E., Grimaldi S., Bloschl G., Sivapalan M., Beven K., Gupta H., ..., Post D.A., Srinivasan V., Harman C.J., Thompson S., Rogger M., Viglione A., McMillan H., Characklis G.W., Pang Z. Belyaev V. "PantaRhei - Everything Flows": Change in hydrology and society - The IAHS Scientific Decade 2013-2022 // Hydrological Sciences Journal. 2013. V. 58 (6). P. 1256-1275
Nesterova N., Makarieva O., Post D. Methods of mathematical modelling for calculating flow characteristics of ungauged rivers in engineering design tasks (by the example of the Khemchik River, Tyva Republic, Russia) // IOP Conf. Ser.: Earth Environ. Sci. 2019. 381 012068. 9 p
Pokrovsky O.S., Manasypov R.M., Kopysov S.G., Krickov I.V., Shirokova L.S., Loiko S.V., Lim A.G., Kolesnichenko L.G., Vorobyev S.N., Kirpotin S.N. Impact of permfrost thaw and climate warming on riverine export fluxes of carbon, nutrients and metals in western siberia // Water. 2020. V. 12 (6). P. 1817
Seibert J. HBV light version 2. User's Manual. Stockholm University, 2005. 32 p
Seibert J., Vis M. J.P. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package // Hydrol. Earth Syst. Sci. 2012. V. 16. P. 3315-3325
Sugawara M. et al. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune // Research note of the National Research Center for Disaster Prevention. 1974. No 11. P. 1-64
Thirel G., Andreassian V., Perrin C., Audouy J.-N., Berthet L., Edwards P., Folton N., Furusho C., Kuentz A., Lerat J., Lindstrom G., Martin E., Mathevet T., Merz R., Parajka J., Ruelland D., Vaze J. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments // Hydrological Sciences Journal. 2015. V. 60 (7-8). P. 1184-1199
Wijayarathne D.B., Coulibaly P. Identification of hydrological models for operational flood forecasting in St. John's, Newfoundland, Canada // Journal of Hydrology: Regional Studies. 2020. No 27. Р. 100646. DOI: 10.1016/j.ejrh.2019.100646
Zakharova E.A., Kouraev A.V., Biancamaria S., Kolmakova M.V., Mognard N.M., Zemtsov V.A., Kirpotin S.N., Decharme B. Snow Cover and Spring Flood Flow in the Northern Part of Western Siberia (the Poluy, Nadym, Pur, and Taz Rivers) // J. Hydrome-teor. 2011. V. 12. P. 1498-1511
Zakharova E.A., Kouraev A.V., Kolmakova M.V., Mognard N.M., Zemtsov V.A., Kirpotin S.N. The modern hydrological regime of the northern part of Western Siberia from in situ and satellite observations // International Journal of Environmental Studies. 2009. V. 66 (4). P. 447-463
 River flow hydrograph simulation in the Western Siberia lowland north for the extreme flood flow prediction based on the HBV-Light model | Geosphere Research. 2020. № 4. DOI: 10.17223/25421379/17/9

River flow hydrograph simulation in the Western Siberia lowland north for the extreme flood flow prediction based on the HBV-Light model | Geosphere Research. 2020. № 4. DOI: 10.17223/25421379/17/9

Download full-text version
Counter downloads: 426