First experimental study of rock-magnetic indicators of archaeological paleo-hearths on the example of Kyrgyzstan loess | Geosphere Research. 2021. № 1. DOI: 10.17223/25421379/18/9_

First experimental study of rock-magnetic indicators of archaeological paleo-hearths on the example of Kyrgyzstan loess

The prospects of application of the rock-magnetic method for characterizing the degree of impact of anthropogenic fires on the enclosing substrate and the possibilities of reconstructing palaeohearth features for archeological purposes are discussed. For the first time, experimental modeling of fireplaces in loess substrate was carried out using four types of fuel: dry bone, wood, winterfat (shrub) and dried dung. Loess was chosen as the initial substrate due to its wide distribution in the Palaeolithic sites of Central Asia. Rock-magnetic methods were used to study three types of samples from each experimental fire: the original substrate (loess), heated loess, and ash samples. It was found that the impact of the fire leads to an increase of the magnetic susceptibility values, saturation isothermal remanent magnetization (SIRM) and anhysteretic remanent magnetization (ARM) of loess deposits by 2-4 times. Changes in the magnetic properties of loess during heating are associated with the following changes in iron-containing minerals: transformation of iron silicates and hydroxides (lepidocrocite, goethite) into iron oxides (maghemite, hematite), transformation of pedogenic maghemite to hematite, and reduction of hematite to magnetite. All ash samples show high values of magnetic susceptibility, SIRM and ARM in comparison with unburned loess due to high concentrations of ultrafine ferrimagnetic particles in the SP and SP / SD states (mainly magnetite), making ash deposits reliable rock-magnetic identifiers of hearths. The SIRM and ARM values of ashes exceed those for loesses on average by 2-3 times, the magnetic susceptibility exceeds by 2-4 times, and the frequency dependence of the magnetic susceptibility (xfB) is 2 % higher on average. The ash samples in our study did not show a significant difference between themselves and dependence from the type of fuel. The results indicate stronger magnetic properties of ash layers and burnt loess in comparison with the host loess sediment, which defines ash and burnt loess as reliable rock-magnetic markers of palaeohearths at archaeological sites in Central Asia. Furthermore, even in the case of the loss of ash layers (direct evidence of fire) as a result of erosion, traces of palaeohearth can be detected by the increased rock-magnetic parameters values of the thermally altered loess, which served as the basis of the ancient fire.

Download file
Counter downloads: 87

Keywords

rock-magnetism, magnetic susceptibility, archaeology, palaeohearths

Authors

NameOrganizationE-mail
Kulakova Ekaterina P.Schmidt Institute of Physics of the Earth RASek.kula@yandex.ru
Dedov Igor E.Institute of Archaeology and Ethnography Siberian Branch RAS11.dedov.com@gmail.com
Meshcheriakova Olga A.Schmidt Institute of Physics of the Earth RASoliya@ifz.ru
Kurbanov Redzhep N.Lomonosov Moscow State University; Institute of Geography RASroger.kurbanov@gmail.com
Всего: 4

References

Zan J., Fang X., Yan M., Li B. New insights into the palaeoclimatic interpretation of the temperature dependence of the magnetic susceptibility and magnetization of Mid-Late Pleistocene loess/palaeosols in Central Asia and the Chinese Loess Plateau // Geophysical Journal International. 2017. V. 208 (2). P. 663-673. DOI: 10.1093/gji/ggw419
Zan J., Fang X., Nie J., Teng X., Yang S. Rock magnetism in loess from the middle Tian Shan: Implications for paleoenvironmental interpretations of magnetic properties of loess deposits in Central Asia // Geochemistry, Geophysics, Geosystems. 2012. V. 13. Q10Z50. DOI: 10.1029/2012GC004251
Vidic N.J., TenPas J.D., Verosub K.L., Singer M.J. Separation of pedogenic and lithogenic components of magnetic susceptibility in the Chinese loess/paleosol sequence as determined by the CBD procedure and a mixing analysis // Geophys. J. Int. 2000. V. 142. P. 551-562.
Tite M.S., Mullins C. Enhancement of the magnetic susceptibility of soils on archaeological sites // Archaeometry. 1971. V. 13 (2). P. 209-219. DOI: 10.1111/j.1475-4754.1971.tb00043.x
Sun W.W., Banerjee S.K., Hunt C.P. The role of maghemite in theenhancement of magnetic signal in the Chinese loess-paleosol sequence: An extensive rock magnetic study combined with citrate-bicarbonatedithionite treatment // Earth and Planetary Science Letters. 1995. V. 133. P. 493-505.
Song Y., Li Y., Wang Q., Dong H., Zhang Z., Orozbaev R. Effect of chemical pretreatments on magnetic susceptibility of loess from Central Asia and the Chinese Loess Plateau // Royal Society of Chemistry. 2018. V. 8. P. 11087-11094.
Peters C., Thompson R., Harrison A., Church M.J. Low temperature magnetic characterisation of fire ash residues // Physics and Chemistry of the Earth. 2002. V. 27(25-31). P. 1355-1361. DOI: 10.1016/S1474-7065(02)00133-X
Özdemir Ö., Banerjee S.K. High temperature stability of maghemite (γ-Fe2O3) // Geophysical Research Letters. 1984. V. 11 (3). P. 161-164. DOI: 10.1029/GL011i003p00161
Peters C., Church M.J., Mitchell C. Investigation of fire ash residues using mineral magnetism // Archaeological Prospection. 2001. V. 8 (4). P. 227-237. doi: 10.1002/arp.171
Mullins C.E. The magnetic properties of the soil and their application to archaeological prospecting // Archaeo-Physika. 1974. V. 5. P. 143-347.
Morinaga H., Inokuchi H., Yamashita H., Ono A., Inada T. Magnetic Detection of Heated Soils at Paleolithic Sites in Japan // Geoarchaeology - An International Journal. 1999. V. 14 (5). P. 377-399.
Maxbauer D.P., Feinberg J.M., Fox D.L. MAX UnMix: A web application for unmixing magnetic coercivity distributions // Computers and Geosciences. 2016. V. 95. P. 140-145. DOI: 10.1016/j.cageo.2016.07.009
Maki D., Homburg J.A., Brosowske S.D. Thermally activated mineralogical transformations in archaeological hearths: Inversion from maghemite γFe2O4 phase to haematite αFe2O4 form // Archaeological Prospection. 2006. V. 13 (3). P. 207-227. DOI:10.1002/arp.277
Liu Q., Deng C., Yu Y., Torrent J., Jackson M.J., Banerjee S.K., Zhu R. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols // Geophysical Journal International. 2005. V. 161 (1). P. 102-112. DOI: 10.1111/j.1365-246X.2005.02564.x
Le Borgne E. Influence du feu sur les propriétés magnétiques du sol et sur celles du schiste et du granite // Annales de Geophysique. 1960. V. 16. P. 159-195.
Linford N.T., Canti M.G. Geophysical evidence for fires in antiquity: Preliminary results from an experimental study // Paper given at the EGS XXIV General Assembly in The Hague, April 1999. Archaeological Prospection. 2001. V. 8 (4). P. 211-225. DOI:10.1002/arp.170
Le Borgne E. Susceptibilitee magnetique anomale du sol superficiel // Annale Geophysics. 1955. V. 11. P. 399-419.
Kruiver P.P., Dekkers M.J., Heslop D. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation // Earth and Planetary Science Letters. 2001. V. 189 (3-4). P. 269-276. DOI: 10.1016/S0012- 821X(01)00367-3
Jrad A., Quesnel Y., Rochette P., Jallouli C., Khatib S., Boukbida H., Demory F. Magnetic Investigations of Buried Palaeohearths Inside a Palaeolithic Cave (Lazaret, Nice, France) // Archaeological Prospection. 2014. V. 21 (October 2013). P. 87-101. DOI: 10.1002/arp.1469
Ji J.F., Balsam W., Chen J., Liu L.W. Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy // Clays Clay Miner. 2002. V. 50. P. 208-216.
Heslop D., Dekkers M.J., Kruiver P.P., van Oorschot I.H.M. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm // Geophysical Journal International. 2002. V. 148 (1). P. 58-64. DOI: 10.1046/j.0956- 540x.2001.01558.x
Hrouda F. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened // Geophysical Journal International. 2011. V. 187 (3). P. 1259-1269. DOI: 10.1111/j.1365-246X.2011.05227.x
Jeleńska M., Hasso-Agopsowicz A., Kopcewicz B. Thermally induced transformation of magnetic minerals in soil based on rock magnetic study and Mössbauer analysis // Physics of the Earth and Planetary Interiors. 2010. V. 179 (3-4). P. 164-177. doi: 10.1016/j.pepi.2009.11.004
Fine P., Singer M.J., La Ven R., Verosub K., Southard R.J. Role of pedogenesis in distribution of magnetic susceptibility in two California chronosequences // Geoderma. 1989. V. 44 (4). P. 287-306. DOI: 10.1016/0016-7061(89)90037-2
Gibson T.H. Magnetic prospection on prehistoric sites in Western Canada // Geophysics. 1986. V. 51. P. 553-560. DOI:10.1190/1.1442109
Evans M.E., Heller F. Environmental Magnetism - Principles and Applications of Enviromagnetics. San Diego : Academic Press, 2003. 293 p.
Dunlop D.J., Ozdemir O. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, 1997.
Egli R. Analysis of the field dependence of remanent magnetization curves // Journal of Geophysical Research. 2003. V. 108 (B2). P. 281. doi: 10.1029/2002JB002023
Dunlop D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data // Journal of Geophysical Research. 2002a. V. 107 (B3). 2056. DOI: 10.1029/2001JB000486
Dunlop D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils // Journal of Geophysical Research. 2002b. V. 107 (B3). 2057. DOI: 10.1029/2001jb000487
Ding Z.L., Ranov V., Yang S.L., Finaev A., Han J.M., Wang G.A. The loess record in southern Tajikistan and correlation with Chinese loess // Earth and Planetary Science Letters. 2002. V. 200. P. 387-400.
Deng C.L., Zhu R.X., Jackson M.J., Verosub K.L., Singer M.J. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator // Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy. 2001. V. 26. P. 873-878.
Day R., Fuller M., Schmidt V.A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence // Physics of the Earth and Planetary Interiors. 1977. V. 13. P. 260-267.
de Boer C.B., Dekkers M.J., van Hoof T.A.M. Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams // Physics of the Earth and Planetary Interiors. 2001. V. 126 (1-2). P. 93-108. DOI: 10.1016/S0031-9201(01)00246-1
Dearing J.A., Dann R.J.L., Hay K., Lees J.A., Loveland P.J., Maher B.A., O’Grady K. Frequency-dependent susceptibility measurements of environmental materials // Geophysical Journal International. 1996. V. 124 (1). P. 228-240. doi: 10.1111/j.1365- 246X.1996.tb06366.x
Church M.J., Peters C., Batt C.M. Sourcing fire ash on archaeological sites in the Western and Northern Isles of Scotland, using mineral magnetism // Geoarchaeology. 2007. V. 22 (7). P. 747-774. DOI: 10.1002/gea.20185
Bonhomme T., Stanley J. Magnetic mapping of prehistoric Aboriginal fireplaces at Bunda Lake, Belarabon Station, New South Wales // Aust. Arch. 1986. V. 21. P. 63-73.
Carrancho Á., Villalaín J.J. Different mechanisms of magnetisation recorded in experimental fires : Archaeomagnetic implications // Earth and Planetary Science Letters. 2011. V. 312 (1-2). P. 176-187. DOI: 10.1016/j.epsl.2011.10.006
Bellomo R.V. A methodological approach for identifying archaeological evidence of fire resulting from human activities // Journal of Archaeological Science. 1993. V. 20 (5). P. 525-553. DOI: 10.1006/jasc.1993.1033
Aldeias V., Dibble H.L., Sandgathe D., Goldberg P., Mcpherron S.J.P. How heat alters underlying deposits and implications for archaeological fire features : A controlled experiment // Journal of Archaeological Science. 2016. V. 67. P. 64-79. DOI: 10.1016/j.jas.2016.01.016
Barbetti M. Traces of fire in the archaeological record, before one million years ago? // Journal of Human Evolution. 1986. V. 15 (8). P. 771-781. DOI: 10.1016/S0047-2484(86)80009-4
Aldeias V. Experimental approaches to archaeological fire features and their behavioral relevance // Current Anthropology. 2017. V. 58. S191-S205. DOI: 10.1086/691210
Шнайдер С.В. Туткаульская линия развития в мезолите западной части Центральной Азии : дис. ... канд. ист. наук. Новосибирск, 2015. С. 290.
Смекалова Т.Н., Восс О., Мельников А.В. Магнитная разведка в археологии. 12 лет применения Оверхаузеровского градиентометра GSM-19WG. СПб. : СПбГУ, 2007. С. 74.
Матасова Г.Г., Казанский А.Ю., Позднякова О.А. Опыт использования петромагнитного метода для оценки перспектив применения магниторазведки на территории археологических памятников Барабинской лесостепи // Физика Земли. 2016. № 6. С. 86-99. DOI: 10.7868/s0002333716060077
Додонов А.Е. Четвертичный период Средней Азии: Стратиграфия, корреляция, палеогеография. М. : ГЕОС, 2002. С. 250.
Матасова Г.Г., Казанский А.Ю., Позднякова О.А., Молодин В.И., Мыльникова Л.Н., Нестерова М.С., Кобелева Л.С. Итоги и перспективы применения петромагнитного метода для исследования археологических памятников Барабинской лесостепи // Проблемы археологии, этнографии, антропологии Сибири и сопредельных территорий. 2013. № 19. С. 251-254.
 First experimental study of rock-magnetic indicators of archaeological paleo-hearths on the example of Kyrgyzstan loess | Geosphere Research. 2021. № 1. DOI: 10.17223/25421379/18/9_

First experimental study of rock-magnetic indicators of archaeological paleo-hearths on the example of Kyrgyzstan loess | Geosphere Research. 2021. № 1. DOI: 10.17223/25421379/18/9_

Download full-text version
Counter downloads: 435