The spatio-temporal distribution of mesoscale convective complexes over the Southeastern Western Siberia
The temporal variability of mesoscale convective complexes (MCCs) formed over southern Western Siberia for the period 2010-2019 has been assessed. During the period of study a total of 279 cases of MCCs were recorded, and two centers having the highest occurrence of MCC were identified. The first repeatability maximum is observed over the northwestern slopes of the Altai Mountains, the Salair Range and the Baraba Lowland, and the second is located over the southern Omsk Region. It was found that higher MCC repeatability over the northwestern Altai Mountains is represented by the air mass genetic type, whereas the MCCs, occurring over the Salair ridge and the Baraba lowland, are related to the frontal type. When evaluating the characteristics of the MCC, it was revealed that the areas of the air mass MCCs are smaller than for the frontal ones, but their cloud top height and the cloud effective radius is higher than for the frontal ones.
Keywords
mesoscale convective system (MCS),
mesoscale convective complex (MCC),
MODIS spectroradiometerAuthors
Kuzhevskaya Irina V. | National Research Tomsk State University | ivk@ggf.tsu.ru |
Zhukova Vera A. | Institute for Monitoring Climate and Ecological Systems | jukowa.vera2017@yandex.ru |
Koshikova Tatyana S. | Institute for Monitoring of Climate and Ecological Systems | tkoshikova@gmail.com |
Pustovalov Konstantin N. | Institute for Monitoring of Climate and Ecological Systems; National Research Tomsk State University | const.pv@yandex.ru |
Nagorskiy Petr M. | Institute of Monitoring of Climate and Ecological Systems | npm_sta@mail.ru |
Всего: 5
References
Ananova L.G., Gorbatenko V.P., Lukovskaya I.A. Radar characteristics of convective clouds during squalls in the southeastern part of Western Siberia // Russian Meteorology and Hydrology. 2007. V. 32. No 7. pp. 449-452
Augustine J.A., Zipser E.J. The use of wind profilers in a mesoscale experiment // Bull. Am. Meteorol. SOC. 1987. V. 68. pp. 4-17
Augustine J.A., Howard K.W. Mesoscale convective complexes over the United States during 1986 and 1987 // Mon. Weather Rev. 1991. V. 119. pp. 1575-1589
Chernokulsky A.V., Bulygina O.N., Mokhov I.I. Recent variations of cloudiness over Russia from sur-face daytime observations // Environ. Research Letters. 2011. V. 6. No 3. pp. 035202
Cotton W.R., Lin M.S., McAnelly R.L., Tremback C.J. A composite model of mesoscale convective complexes // Mon.Weather Rev. 1989. V. 117. pp. 765-783
Fritsch J.M., Maddox R.A. Convectively-driven mesoscale pressure systems aloft, Part I: Observations // J. Clim. Appl. Meteorol. 1981. V. 20. pp. 9-19
Fritsch J.M., Kane R.J., Chelius C.H. The contribution of mesoscale convective weather systems to the warm season precipitation in the United States // J. Clim. Appl. Meteorol. 1986. V. 25. pp. 1333-1345
Fritsch J.M., Murphy J.D., Kain, J.S. Warm core vortex amplification over land // J. Atmos. Sci. 1994. V. 51. pp. 1781-1806
Gorbatenko V.P., Kuzhevskaya I.V., Pustovalov K.N., Chursin V.V., Konstantinova D.A. Assessment of Atmospheric Convective Potential Variability in Western Siberia in Changing Climate // Russian Meteorology and Hydrology. 2020. V. 45. pp. 360-367. In Russian
Gorbatenko V.P., Konstantinova D.A. Mesoscale convection and dangerous weather phenomena in southeast of Western Siberia // Proceedings of 7th Asia-Pacific International Conference on Lightning (November 1-4, 2011, Chengdu, China). Beijing: Publishing house Tsinghua University. 2011. pp. 264-279
Gorbatenko V.P., Tunaev E.L., Pustovalov K.N., Volkova M.A., Nechepurenko O.E. Izmeneniya ciklogeneza nad ZapadnojSibir'yu v 1976-2017 gg. [The dynamics of cyclogenesis over Western Siberia in 1976-2017] // Fundamental'naya i prikladnaya klimatologiya [Fundamental and applied climatology]. 2020. No 2. pp. 35-57. In Russian
Houze R.A., Jr. Mesoscale convective systems // Reviews of Geophysics. 2004. V. 42. P. RG4003
Houze R.A., Jr. Cloud Dynamics: 2nd ed. Academic Press, In. 2014. 496 p
Johnson R.H., Bartels D.L. Circulations associated with a nature-to-decaying mid-latitude mesoscale convective system. Part 11: Upper-level features // Mon. Weather Rev. 1992. V. 120. pp. 1301-1320
Kononova N.K. Cirkulyacionnye epohi v sektorah Severnogo polushariya v 1899-2014 g. [Circulation epochs in the sectors of the Northern Hemisphere in 1899-2014] // Geopolitics and Ecogeodynamics of regions. 2015. V. 1 (11). Vyp. 2. pp. 56-66. In Russian
Kuzhevskaia I.V., Volkova M.A., Nechepurenko O.E., Chursin V.V. A study of hailstorms in the South of Western Siberia // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 698. pp. 1-7
Kuzhevskaya I.V., Pustovalov K.N., Sharapova A.A. Harakteristiki konvektivnyh klasterov, vosstanovlennye po dannym instru-mentov zondirovaniya ATOVS [Characteristics of convective clusters reconstructed according to the ATOVS probing tools] // Funda-mental'naja i prikladnaja klimatologija [Fundamental and applied climatology]. 2018. V. 2. pp. 69-85. In Russian
Laing A.G., Fritsch J.M. The global population of mesoscale convective complexes // Q. J. R. Meteorol. SOC. 1997. V. 123. pp. 389-405
Maddox R.A. Mesoscale convective complexes // Bull. Am. Meteorol. Soc., 1980. V. 61. pp. 1374-1387
Maddox R.A. Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes // Mon. Weather Rev. 1983. V. 111. pp. 1475-1493
McAnelly R.L., Cotton W.R. The precipitation life cycle of mesoscale convective complexes over the central United States // Mon. Weather Rev. 1989. V. 117. pp. 784-808
Nagorsky P.M., Smirnov S.V., Pustovalov K.N., Morozov V.N. Electrode layer in the electric field of deep convective cloudiness // Radiophysics and Quantum Electronics. 2014. V. 56. No 11-12. pp. 769-777
Nagorskiy P.M., Morozov V.N., Pustovalov K.N., Oglezneva M.V. Variations of Light Ion Concentrations in The Surface Atmosphere During the Passage of Convective Clouds / 2019 Russian Open Conference on Radio Wave Propagation, RWP 2019 - Proceedings 2019 // IEEE Xplore Digital Library. 2019. № CFP19T36-ART. pp. 584-587
Nechepurenko O.E., Gorbatenko V.P., Bart A.A., Belikova M.Yu. The forecast of the spatial position of convective cells using a data by global SL-AV NWP model // Proceedings of SPIE. 2016. V. 10035. pp. 1-5
Podnebesnykh N.V., Ippolitov I.I. Krupnomasshtabnaya atmosfernaya cirkulyaciya nad Sibir'yu v konce hkh - nachale xxi vekov: sravnenie dannyh... [Large-scale atmospheric circulation over Siberia at the end of xx and the beginning of XXI centuries: a comparison of data obtained on the basis of surface synoptic charts and the reanalysis] // Fundamental'naja i prikladnaja klimatologija [Fundamental and applied climatology]. 2019. V. 2. pp. 34-44. In Russian
Pustovalov K.N., Nagorskiy P.M. The main types of electric field variations during the passage of cumulonimbus clouds of different genesis // Optika Atmosfery i Okeana. 2016. V. 29. No 8. pp. 647-653. In Russian
Pustovalov K.N., Nagorskiy P.M. Response in the surface atmospheric electric field to the passage of isolated air mass cumulonimbus clouds // Journal of Atmospheric and Solar-Terrestrial Physics. 2018. V. 172. pp. 33-39
Pustovalov K.N., Nagorskiy P.M. Comparative Analysis of Electric State of Surface Air Layer during Passage of Cumulonimbus Clouds in Warm and Cold Seasons // Atmospheric and Oceanic Optics. 2018. V. 31. No 6. pp. 685-689
Qu J.J., et al. Earth Science Satellite Remote Sensing. V. 1: Science and Instruments. Beijing: Tsinghua University Press and Springer-Verlag GmbH Berlin Heidelberg. 2006. 418 p
Tunaev E.L., Gorbatenko V.P. Energeticheskie harakteristiki atmosfery pri ciklogeneze nad rajonami Vasyuganskogo Bolota [Energy characteristics of the atmosphere during cyclogenesis over the regions of the Vasyugan Swamp] // Gidrometeorologicheskie issledo-vaniya i prognozy [Hydrometeorological Research and Forecasting]. 2018. No 4 (370). pp. 48-62. In Russian
Vel'tishchev N.F., Stepanenko V.M. Mesometeorological processes. Moscow: MGU. 2006. 101 p. In Russian
Velasco I., Fritch J.M. Mesoscale convective complexes in the Americas // J. Geoph. Res. 1987. V. 93. No. D8. pp. 9561-9613
Wetzel P.J., Cotton W.R., McAnnelly R.L. A long-lived mesoscale convective complex. Part 11: Evolution and structure of the mature complex // Mon. Weather Rev. 1983. V. 111. pp. 1919-1937
Zhokhova D.A., Kuzhevskaia I.V., Pustovalov K.N., Chursin V.V. Sluchaj zimnej konvekcii po dannym ATOVS. [Cases of winter convection according to ATOVS data] // Trudy Voenno-kosmicheskoj akademii imeni A.F. Mozhajskogo. 2018. No 662. pp. 211-214. In Russian
Zhukova V.A., Koshikova T.S., Kuzhevskaya I.V. Assessment of parameters of mesoscale convective systems based on satellite and upper-air sounding database (West Siberia) // Geosphere Research. 2019. No 2. pp. 86-97. In Russian