Geochemical features of the behavior of Terbium, Dysprosium, and Holmium in aquatic medium in the presence of humic acids (experimental data) | Geosphere Research. 2021. № 4. DOI: 10.17223/25421379/21/5

Geochemical features of the behavior of Terbium, Dysprosium, and Holmium in aquatic medium in the presence of humic acids (experimental data)

Behavior of rare earth elements in model solutions has been studied in this article using the example of dysprosium, holmium and terbium in the presence of humic acids. The research has been carried out using ultrafiltration, inductively coupled plasma mass spectrometry, infrared spectrometry methods, together with thermodynamic calculations. The solutions of different pH values and different content of matrix components at constant values of the concentration of lanthanides were prepared to study the geochemical features in the behavior of rare-earth elements. The value of the activity of complex compounds of rare-earth elements with chloride and nitrate ions is relatively low over the entire pH range and the content of matrix components. The considered elements in an acidic medium with the pH value 4 are mainly present in the form of aqua ions Ln3+. The pH value 6 leads to the dominance of the fraction of their humic associate HA-Ln with the maximum content in terbium in the solution. When the solution is made alkaline, carbonate complexes of Ln(CO3)2- lanthanides are formed in significant amounts with their maximum content at the pH value 11. The ratio between organic and inorganic compounds for each element is different. Thermodynamic calculations prove that the limitation of mobility in a solution of dysprosium, holmium and terbium occurs due to their sorption by humic acids, the formation of poorly soluble hydroxides Ln(OH)3 and their precipitation. With the help of thermodynamic calculations, anomalously low concentrations of rare earth elements of the MREE are explained in comparison with the content of elements of LREE and HREE subgroups in the water column of Lake Doroninskoye. The calculation of the speciation of lanthanides shows that the main form of migration in water is complex organic compounds of lanthanides, the proportion of which in the La-Lu series increases with an insignificant decrease in the Gd concentration. The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern suggests that carboxylic groups are the main binding sites of REE in HA. The Ln(CO3)2- carbonate forms are present in incommensurably small amounts, and, on the contrary, decrease in the La-Lu series. The decrease in the concentration of lanthanides from the water surface to the bottom is explained by the possibility of water saturation relative to Ln(OH)3 with the highest saturation index for MREE elements; they are also sorbed in large quantities by humic acids. The results presented in this study show that, before running speciation models, it is essential to know the proportion of organics that is active in complexing REE in a given water sample. This requirement could severely complicate the use of models to assess the role of organics in controlling the speciation of REE in natural waters.

Download file
Counter downloads: 19

Keywords

rare earth elements, humic acids, complexation, sorption

Authors

NameOrganizationE-mail
Borzenko Svetlana V.Institute of Natural Resources, Ecology and Cryology SB RASsvb_64@mail.ru
Zasukhina Ekaterina M.Transbaikal State Universityekat.zasukhina@mail.ru
Fedorov Igor A.Institute of Natural Resources, Ecology and Cryology SB RASfedorowia@gmail.com
Letunov Vitaliy I.Transbaikal State Universityletunovvi@gmail.com
Komogortseva Irina A.Institute of Natural Resources, Ecology and Cryology SB RASkomogorcevai@bk.ru
Всего: 5

References

Арбузов С.И., Ильенок С.С., Машенькин В.С., Сунь Ю., Жао Ц., Блохин М.Г., Иванов В.В., Зарубина Н.В. Редкоземельные элементы в позднепалеозойских углях Северной Азии (Сибирь, Северный Китай, Монголия, Казахстан) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2016. Т. 327, № 8. C. 74-88
Борзенко С.В., Замана Л.В., Зарубина О.В. Распределение редкоземельных элементов в водах и донных осадках минеральных озер Восточного Забайкалья (Россия) // Литология и полезные ископаемые. 2017. № 4. С. 306-321
Борзенко С.В., Замана Л.В., Усманов М.Т. Распределение редкоземельных элементов в минеральных озерах юговосточного Забайкалья // Геологическая эволюция взаимодействия воды с горными породами : материалы 2-й Всероссийской конференции с международным участием. Владивосток : Дальнаука, 2015. С. 238-241
Волков И.В. Реакции микроэлементов с гуминовыми кислотами как основа сорбционной дезактивации и очистки техногенных отходов : автореф. дис. ... канд. хим. наук. Екатеринбург, 2016
Гавриков А.В. Комплексы РЗЭсанионами карбоновых кислот, содержащих металлоорганические производные циман-трена и бенхротрена: синтез, структура и физико-химические свойства : автореф. дис. . канд. хим. наук. М., 2016
Дубинин А.В. Геохимия редкоземельных элементов в океане // Литология и полезные ископаемые. 2004. Т. 4. С. 339-349
Замана Л.В., Борзенко С.В. Элементная сера в рапе озера Доронинское (Восточное Забайкалье) // Доклады Академии наук. 2011. Т. 438, № 4. С. 515-518
Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М. : МГУ, 1990. 325 с
Попов А.И. Гуминовые вещества: свойства, строение, образование. СПб. : СПбГУ, 2004. 248 с
Сильверстейн Р., Вебстер Ф., Кимл Д. Спектрометрическая идентификация органических соединений. М. : БИНОМ, 2012. 557 с
Харитонова Н.А., Вах Е.А., Челноков Г.А., Чудаев О.В., Александров И.А., Брагин И.В. Геохимия редкоземельных элементов в подземных водах Сихотэ-Алинской складчатой области (Дальний Восток России) // Тихоокеанская геология. 2016. Т. 35, № 2. С. 68-82
Чечель Л.П. Особенности распределения и фракционирования РЗЭвтехногенных водах вольфрамовых месторождений Восточного Забайкалья // Международный журнал прикладных и фундаментальных исследований. 2016. № 12-6. С. 983-988
Чиркст Д.Э., Лобачева О.Л., Берлинский И.В. Энергии Гиббса образования гидроксидов лантаноидов и иттрия // Журнал физической химии. 2010. Т. 84, № 12. С. 2241-2244
Чиркст Д.Э., Лобачева О.Л., Джевага Н.В. Термодинамика образования гидроксидов и гидроксокомплексов лантана (III) и гольмия (III) // Журнал физической химии. 2011. Т. 85, № 11. С. 2011-2014
Чудаев О.В., Харитонова Н.А., Челноков Г.А., Брагин И.В., Калитина Е.Г. Геохимические особенности поведения редкоземельных элементов в водах Дальнего Востока России в условиях природных и антропогенных аномалий. Владивосток : Дальнаука, 2017. 152 с
Borzenko S.V., Zamana L.V. REE in waters and bottom sediments of salt lakes of Southeastern Transbaikalia, Russia. 16th International Symposium on Water-Rock Interaction (WRI-16) and 13th International Symposium on Applied Isotope Geochemistry (1st Iagc International Conference), series of books: e3s web of conferences. 2019. V. 98. 01004
Borzenko S.V., Zamana L.V., Usmanova L.I. Basic formation mechanisms of the Lake Doroninskoye soda water (East Siberia, Russia) // Acta Geochimica. 2018. V. 37. No. 4. С. 546-558
Cook R.L., Langford R.L. A biogeopolymeric view of humic substances with application to paramagnetic metal effects on 13C NMR. // Understanding humic substances: Advanced methods, properties and applications / eds. by E.A. Ghabbour, G. Davies. London : The Royal Society of Chemistry, Cambridge. 1999. P. 31-48
Davranche M., Pourret O., Gruau G., Dia A. Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide // Journal of Colloid and Interface Science. 2004. V. 277. P. 271-279
De Baar H.J. W., Schijf J., Byrne R.H. Solution chemistry of the rare earth elements in seawater // European Journal of Solid State and Inorganic Chemistry. 1991. V. 28. P. 357-373
Elderfield H., Upstill-Goddard R., Sholkovitz E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters // Geochimica et Cosmochimica Acta. 1990. V. 54. P. 971-991
Fairhurst A.J., Warwick P., Richardson S. The influence of humic acid on the adsorption of europium onto inorganic colloids as a function of pH // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1995. V. 99, No. 2-3. P. 187-199
Felmy A.R., Girvin D.C., Jenne E.A. MINTEQ - A computer program for calculating aqueous geochemical equilibria. Athens, GA : U.S. Environmental Protection Agency, 1984. 98 p
Goldstein S.J., Jacobsen S.B. Rare earth elements in river waters // Earth and Planetary Science Letters. 1988. V. 89. No. 1. P. 35-47
Gustafsson J.P. Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model // Journal of Colloid and Interface Science. 2001. V. 244, No. 1. P. 102-112
Johannesson K.H., Stetzenbach K.J., Hodge V.F., Lyons W.B. Rare earth element complexation behavior in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions // Earth and Planetary Science Letters. 1996. V. 139. P. 305-319
Liu X., Byrne R.H.Comprehensive investigation of yttrium and rare earth element complexation by carbonate using ICP-Mass Spectrometry // Journal of Solution Chemistry. 1998. V. 9. P. 803-815
Norden M., Ephhraim J.H., Allard B. The binding of strontium and europium by an aquatic fulvic acid-ion exchange distribution and ultrafiltration studies // Talanta. 1993. V. 40, No. 9. P. 1425-1432
Pourret O., Davranche M., Gruau G., Dia A.Competition between Humic Acid and Carbonates for Rare Earth Elements Com-plexation // Journal of Colloid and Interface Science. 2007. V. 305, No. 1. P. 25-31
Sonke J.E., Salters V.J.M. Lanthanide-humic substances complexation. I. Experimental evidence for a lanthanide contraction effect // Geochimica et Cosmochimica Acta. 2006. V. 70. P. 1495-1506
Thurman E.M. Organic geochemistry of natural waters. Dordrecht, The Nitherlands: Martinus Nijhoff/Dr W. Junk Publ., 1985. 489 p
Tipping E. Cation Binding by Humic Substances. Cambridge : Cambridge University Press, 2002. 434 p
Vermeer A.W.P., Van Riemsdijk W.H., Koopal L.K. Adsorption of humic acid to mineral particles. 1. Specific and Electrostatic Interactions // Langmuir. 1998. V. 14. P. 2810-2819
 Geochemical features of the behavior of Terbium, Dysprosium, and Holmium in aquatic medium in the presence of humic acids (experimental data) | Geosphere Research. 2021. № 4. DOI: 10.17223/25421379/21/5

Geochemical features of the behavior of Terbium, Dysprosium, and Holmium in aquatic medium in the presence of humic acids (experimental data) | Geosphere Research. 2021. № 4. DOI: 10.17223/25421379/21/5

Download full-text version
Counter downloads: 1525