Temperature profile in the continental lithosphere and in the mantle beneath a continent | Geosphere Research. 2022. № 2. DOI: 10.17223/25421379/23/3

Temperature profile in the continental lithosphere and in the mantle beneath a continent

To study the structure and composition of the upper mantle as well as to determine its physical properties, it is necessary to know the temperature distribution in it. In studies of the temperature field during the subduction, it is necessary to know the temperature boundary conditions in the upper mantle at the continental limb of the subduction zone. To find the temperature distribution in the upper mantle, it is necessary to know the temperature conditions at the upper - lower mantle boundary. These conditions can result from the analysis of heat transfer in the lower mantle. The temperature distribution in the continental lithosphere is obtained in the approximation of conductive heat transfer with internal heat sources in the crustal layer. The distribution of radioactive heat release through the thickness of the crustal layer is approximated by an exponential law. The temperature distribution through the thickness of the continent away from the subduction zone is compared with the temperature conditions of Northern Lesotho lherzolites. The latter agree closely with the calculated temperature profile. A three-layered structure of the upper mantle in the continental limb of the subduction zone is considered. The upper layer is represented by the continental lithosphere. The asthenospheric layer underlies the lithosphere extending to a depth of 410 km. The layer C is below the asthenosphere. Such a three-layer structure is obtained on the basis of the density and seismic velocity distribution in the Earth's mantle (PREM). The lithospheric mantle is highly viscous, its kinematic viscosity is г ® 108-1019 m2/s. The kinematic viscosity of the asthenospheric layer (Га ® 1014 m2/s) was estimated earlier on the basis of our experimental and theoretical modeling. In the present paper the kinematic viscosity of layer C (гс ® 4 x 1015 m2/s) is estimated. The analysis of heat transfer in the lithosphere is carried out in the approximation of conductive heat transfer (the kinematic viscosity is гл to). The analysis of heat transfer in the asthenosphere and the layer C is performed in the approximation of free-convective heat transfer. The asthenospheric layer and the layer C are separated by the "olivine-wadsleyite" phase transition. The temperature distribution in the asthenospheric layer and the layer C is obtained on the basis of experimental data on convective heat transfer in the horizontal liquid layer heated from below and cooled from above. The temperature distribution in the lower mantle was based on the results of experimental modeling of free-convection flows in the horizontal layer heated from below for the Rayleigh number Ra = 106-107 i.e., for turbulent regime of free convection.

Download file
Counter downloads: 14

Keywords

continental lithosphere, asthenosphere, lower mantle, experimental and theoretical modeling, free-convective flows, horizontal liquid layer, temperature distribution

Authors

NameOrganizationE-mail
Kirdyashkin Anatoly G.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciencesagk@igm.nsc.ru
Kirdyashkin Alexey A.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciencesaak@igm.nsc.ru
Всего: 2

References

Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Глубинная геодинамика. Новосибирск : Изд-во СО РАН, филиал «Гео», 2001. 408 с
Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Параметры горячих точек и термохимических плюмов // Геология и геофизика. 2005. Т. 46, № 6. С. 589-602
Жарков В.Н. Внутреннее строение Земли и планет. М. : Наука, 1983. 416 с
Кирдяшкин А.А., Добрецов Н.Л., Кирдяшкин А.Г. Теплообмен между каналом термохимического плюма и окружающей мантией при наличии горизонтального мантийного потока // Физика Земли. 2009. № 8. С. 66-82
Кирдяшкин А.А., Кирдяшкин А.Г. Влияние скорости движения океанической литосферы на свободно-конвективные течения в астеносфере под срединно-океаническим хребтом // Физика Земли. 2008. № 4. С. 35-47
Кирдяшкин А.А., Кирдяшкин А.Г. Силы, действующие на субдуцирующую океаническую плиту // Геотектоника. 2014. № 1. С. 62-76
Кирдяшкин А.А., Кирдяшкин А.Г. Экспериментальное и теоретическое моделирование тепловой и гидродинамической структуры субдуцирующей плиты // Геотектоника. 2013. № 3. С. 31-42
Кирдяшкин А.А., Кирдяшкин А.Г., Сурков Н.В. Тепловая гравитационная конвекция в астеносфере под срединноокеаническими хребтами и устойчивость основных глубинных парагенезисов // Геология и геофизика. 2006. Т. 47, № 1. С. 76-94
Кирдяшкин А.Г. Тепловые гравитационные течения и теплообмен в астеносфере. Новосибирск : Наука, 1989. 81 с
Кусков О.Л., Кронрод В.А. Об определении температуры континентальной верхней мантии Земли по геохимическим и сейсмическим данным // Геохимия. 2006. № 3. С. 267-283
Кутателадзе С.С., Кирдяшкин А.Г., Ивакин В.П. Турбулентная естественная конвекция у изотермической вертикальной пластины // Теплофизика высоких температур. 1972. Т. 10, № 1. С. 91-95
Леонтьев А.И., Кирдяшкин А.Г. Теплообмен при свободной конвекции в горизонтальных щелях и в большом объеме над горизонтальной поверхностью // Инженерно-физический журнал. 1965. Т. 9, № 1. С. 9-14
Сурков Н.В. Лерцолитовая палеогеотерма // Проблемы прогнозирования, поисков и изучения месторождений полезных ископаемых на пороге XXI века / ред. А.Д. Савко, Н.Н. Зинчук. Воронеж : Изд-во Воронеж. гос. ун-та, 2003. С. 430-433
Трубицын В.П., Евсеев А.Н., Баранов А.А., Трубицын А.П. Структура конвекции при различной ширине зон фазовых переходов // Физика Земли. 2008. № 8. С. 3-14
Anderson D.L. New theory of the Earth. Cambridge University Press, 2007. 384 p
Anderson O.L. The temperature profile of the upper mantle //j. Geophys. Res. 1980. V. 85 (B12). P. 7003-7010
Bina C.R., Helffrich G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography //j. Geophys. Res. 1994. V. 99 (B8). P. 15,853-15,860
Cammarano F., Goes S., Vacher P., Giardini D. Inferring upper-mantle temperatures from seismic velocities // Phys. Earth Planet.Inter. 2003. V. 138. P. 197-222
Dziewonski A.M., Anderson D.L. Preliminary reference Earth model // Phys. Earth Planet.Inter. 1981. V. 25. P. 297-356
Faccenda M., Dal Zilio L. The role of solid-solid phase transitions in mantle convection // Lithos. 2017. V. 268-271. P. 198-224
Herzberg C., Zhang J. Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone //j. Geophys. Res. 1996. V. 101 (B4). P. 17,729-17,742
Hofmeister A.M. Heat transport and energetics of the earth and rocky planets. Elsevier, 2019. 350 p. DOI: 10.1016/C2018-0-04206-1
Jaupart C., Mareschal J.-C. Heat flow and thermal structure of the lithosphere // Crust and lithosphere dynamics / ed. G. Schubert. Amsterdam : Elsevier, 2007. P. 217-251. (Treatise on Geophysics; v. 6)
Jeanloz R., Morris S. Temperature distribution in the crust and mantle // Annu. Rev. Earth Planet. Sci. 1986. V. 14. P. 377-415
Katsura T., Yoneda A., Yamazaki D., Yoshino T., Ito E. Adiabatic temperature profile in the mantle // Phys. Earth Planet.Inter. 2010. V. 183 (1-2). P. 212-218
Lindemann F.A. Uber die Berechnung molekularer Eigenfrequenzen // Physicalische Zeitschrift. 1910. Bd. XI (14). S. 609-612
McKenzie D., Jackson J., Priestley K. Thermal structure of oceanic and continental lithosphere // Earth Planet. Sci. Lett. 2005. V. 233. P. 337-349
Perchuk L.L., Kushiro I. Experimental study of the system alkali basalt-water up to pressure 20 kbar in respect of estimation of H2O content in the original magmas beneath the island arcs // Geologicky Zbornik - Geologica Carpathica. 1985. V. 36 (3). P. 359-368
Rohm A.H.E., Snieder R., Goes S., Trampert J. Thermal structure of continental upper mantle inferred from S-wave velocity and surface heat flow // Earth Planet. Sci. Lett. 2000. V. 181. P. 395-407
Schubert G., Turcotte D., Olson P. Mantle convection in the Earth and planets. Cambridge University Press, 2001. 940 p
Strehlau J., Meissner R. Estimation of crustal viscosities and shear stresses from an extrapolation of experimental steady state flow data // Composition, structure and dynamics of the lithosphere-asthenosphere system / K. Fuchs, C. Froidevaux (eds.). Washington : AGU, 1987. V. 16. P. 69-87. DOI: 10.1029/GD016p0069
Turcotte D.L., Schubert G. Geodynamics. Cambridge University Press, 2002. 456 p
Walzer U., Hendel R., Baumgardner J. The effects of a variation of the radial viscosity profile on mantle evolution // Tectonophysics. 2004. V. 384. P. 55-90
Yasuda A., Fujii T., Kurita K. Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: Implications for the behavior of subducted oceanic crust in the mantle //j. Geophys. Res. 1994. V. 99 (B5). P. 9401-9414
 Temperature profile in the continental lithosphere and in the mantle beneath a continent | Geosphere Research. 2022. № 2. DOI: 10.17223/25421379/23/3

Temperature profile in the continental lithosphere and in the mantle beneath a continent | Geosphere Research. 2022. № 2. DOI: 10.17223/25421379/23/3

Download full-text version
Counter downloads: 179