Olivine and Cr-spinel from the Noril'sk-1 deposit: compositions and petrological implications | Geosphere Research. 2022. № 2. DOI: 10.17223/25421379/23/5

Olivine and Cr-spinel from the Noril'sk-1 deposit: compositions and petrological implications

Differentiated intrusions of the “Norilsk type” are among the world's largest deposits of Cu, Ni and platinum group elements (PGE). They are composed of gabbro-dolerites (gabbros with a pronounced ophitic structure), which mineral composition ranges from picritic and troctolitic varieties to leucogabbro and gabbro -diorites . Economically significant reserves are concentrated in three types of ores: (1) massive sulfide ores that form deposits in the bottom parts of the intrusions, (2) disseminated sulfide ores located at the lower parts of the intrusions, and (3) rocks with rich chromite mineralization and high ratios of PGE/Cu-Ni-sulfides - low-sulfide ores that form discontinuous horizons (LS-horizons) in the upper endocontact zones of the intrusions. Among the hypotheses about the origin of the Norilsk type intrusions, the most acknowledged is the "flow chamber model", within which the intrusions and accumulations of sulfide ores were formed during a long flow through the near-surface chambers of basaltic melts, comagmatic to the basalt formations of the Norilsk region [Naldrett et al., 1992; Rad'ko, 1991]. However, a number of studies show that (1) the intrusions of the Norilsk type have been forming over a long period of time from 290 to 230 Ma [Malitch et al., 2010]; (2) they were formed later than a significant part of the trap basalts [Krivolutskaya, 2016] and (3) the parental magmas for these intrusions differed significantly from the trap ones, and in fact, there are no bona fide co -magmatic rocks of the Norilsk intrusions among the represented basalt formations [Latypov, 2002]. In this work, we consider compositions of olivine and Cr-spinels from disseminated sulfide ores and the LS-horizon of the Norilsk-1 intrusion as petrological indicators, compare them with these minerals in trap basalts, and estimate redox conditions of formation of these types of ores. It was noted that after crystallization, olivine and chrome spinel re-equilibrated with each other and the environment (melt, other minerals). Olivine in disseminated sulfide ores is characterized by narrow Mg# range and re -equilibration with high Ni sulfides, which is manifested in the growth of Ni and Fe (reverse Ni-Mg # trend) [Barnes et al., 2011; Barnes et al., 2013]. The composition of Cr-spinels varies over a very wide range, especially in Mg # (from 5 to 55) values and TiO2 (up to 18 %) content, and in Fe2+/Fe3+ variations. Evolution of the Cr-spinel compositions towards low Mg# values region is characteristic of Cr-spinel inclusions in olivine and clinopyroxene, as well as in altered minerals, while plagioclase hosts more magnesian Cr-spinel grains. Based on the obtained results and data of [Kamenetsky, Crawford, Meffre, 2001] Cr-spinels with Mg # > 25 can be considered relatively primitive (weakly re-equilibrated). Comparison of the composition of the studied minerals with their counterparts from trap basalts showed that the compositions of olivine, especially in terms of Ni, differ between disseminated ores, LS-horizon and trap basalts. In general, the NiO concentrations in the analyzed olivines lie between the picrobasalts of the Gudchikhinskiy Formation and the basalts of the Tuklons kiy and Nadezhdinsky Formations. However, compositions of olivines of disseminated ores are close to the olivines from picro-basalts of the Gudchikhiy Formation, as well as several obtained analyzes from the Mokulaevskiy Formation. Cr -spinels of the Norilsk-1 intrusion are generally richer in Ni than the chromites of the Tuklonskiy and Nadezhdinskiy formations and, according to this feature, correspond to the picrobasalts of the Gudchikhinskiy Formation. Based on the data obtained, we assume that the ore-bearing rocks of the Norilsk-1 intrusion were formed from magmas enriched in Ni and similar to the effusive rocks of the Gudchikhinskiy or Mokulaevskiy formations. At the same time, different magmatic impulses and, accordingly, different melt compositions could be responsible for the formation of disseminated sulfide ores and the MS horizon. Since strong variations in Fe2+/Fe3+ ratio in Cr-spinels can result from variations in the redox conditions the parental media, we estimated f(O2) for the rocks of the studied series. As soon as application of olivine-spinel thermometer and oxybarometer was considered as limited due to strong re-equilibration of Cr-spinel [Nikolaev et al., 2016], the olivine-chromite pair was used to calculate the T-f(O2) parameters for only the most primitive Cr-spinels from the picrobasalts of the Gudchikhinskiy Formation and the LS-horizon of the Norilsk-1 intrusion. The temperature calculated using the Al-in-olivine oxybarometer [Coogan, Saunders, Wilson, 2014] was 1150-1240 °C, and the log10f(O2) calculated using the Mg-Fe olivine-chromite oxybarometer [Nikolaev et al., 2016] was -9 - -9.8 for picrobasalts, and LS-horizon -8 - -9. To estimate f(O2) for the rocks of the LS-horizon that do not contain fresh olivine and for disseminated sulfide ores, in which all olivine - chromite pairs were strongly reequilibrated, we adopted a semi-quantitative method based on the conversion of Fe2+/Fe3+ in Cr-spinel to Fe2+/Fe3+ in the melt [Maurel, Maurel, 1984] with further estimation of f(O2), based on the empirical correlation for basaltic magmas [Fudali, 1965] which was calibrated to f(O2) for Cr-spinels of the Gudchikhinskiy Formation, obtained using the olivine-spinel oxybarometer. According to the estimations, disseminated sulfide ores of the Norilsk-1 intrusion crystallized at log10f(O2) from -7.5 to -9, which at 1175 oC is ~ NNO ± 1 and slightly increased relative to the picrobasalts of the Gudchikhinskiy, Nadezhdinskiy and Tuklonskiy formations. For the LS-horizon, estimates of log10f(O2) showed very different values for different samples. In most cases, log10f(O2) at 1175oC was about -9, which is close to the picrobasalts of the Gudchikhinskiy Formation. Nevertheless, some samples showed more oxidized conditions (up to log10f(O2) = -7 or ~ QFM + 2), and some samples, on the contrary, down to log10f(O2) = -12. The latter are close to the IW (Fe-FeO) buffer and are extremely reduced conditions for igneous rocks. Such broad range of f(O2) is unique to the Norilsk-1 intrusion and is not typical for the rocks of the upper endocontact with the LS-horizon of the Talnakh intrusion, for which the log10f(O2) estimates do not fall below the WM (FeO-Fe3O4) buffer. We assume that the variations in redox conditions in the LS-horizon of the Norilsk-1 intrusion are associated with the intense assimilation of coal shales of the Tunguska Formation.

Download file
Counter downloads: 25

Keywords

Norilk'sk-1, chromite, olivine, sulfide-poor ores, disseminated sulfide ores

Authors

NameOrganizationE-mail
Chayka Ivan F.Institute of Experimental Mineralogy RAS; V.S. Sobolev Institute of Geology and Mineralogy SB RASivanlab211@gmail.com
Izokh Andrey E.V.S. Sobolev Institute of Geology and Mineralogy SB RAS; Novosibirsk State Universityizokh@igm.nsc.ru
Kalugin Valery M.V.S. Sobolev Institute of Geology and Mineralogy SB RASvalery_kalugin@mail.ru
Zhitova Lyudmila M.V.S. Sobolev Institute of Geology and Mineralogy SB RAS; Novosibirsk State Universityzhitova@igm.nsc.ru
Shvedov Gennady I.Siberian Federal Universityg.shvedov@mail.ru
Gora Marina P.V.S. Sobolev Institute of Geology and Mineralogy SB RASgora@igm.nsc.ru
Shevko Artem Ya.V.S. Sobolev Institute of Geology and Mineralogy SB RASsp@igm.nsc.ru
Всего: 7

References

Гора М., Шевко А., Житова Л. Оксидная рудная минерализация траппов: северо-запад Сибирской платформы. Saarbrucken : LAP LAMBERT Academic Publishing, 2012. 114 с
Дистлер В.В. Платиновая минерализация Норильских месторождений // Геология и генезис платиновых металлов. М. : Наука, 1994. С. 7-35
Золотухин В.В., Виленский А.М., Дюжиков О.А. Базальты Сибирской платформы. Новосибирск : Наука, Сиб. отд-ние, 1986. 246 c
Иванов М.К., Иванова Т.К., Тарасов А.В., Шатков В.А. Характеристики петрологии и рудной минерализации дифференцированных интрузий Норильского рудного узла (месторождения Норильск-1, Норильск-2 и г. Хромая) // Петрология и рудоносность Талнахских и Норильских дифференцированных интрузий / под ред. М.К. Додин, Д.А. Батуев, Б.Н. Иванов. Л. : Недра, 1971. С. 197-305
Налдретт Э.Д. Магматические сульфидные месторождения медно-никелевых и платинометальных руд. СПб. : СПбГУ, 2003. 487 с
Радько В.А. Модель динамической дифференциации интрузивных траппов северо-запада Сибирской платформы // Геология и геофизика. 1991. № 11. С. 19-27
Радько В.А. Фации интрузивного и эффузивного магматизма Норильского района. СПб. : Картограф. фабрика ВСЕГЕИ, 2016. 225 с
Служеникин С.Ф., Дистлер В.В., Дюжиков О.А., Кравцов В.Ф., Кунилов В.Е., Лапутина И.П., Туровцев Д.М. Мало-сульфидное платиновое оруденение в норильских дифференцированных интрузивах // Геология рудных месторождений. 1994. Т. 36, № 3. С. 195-217
Соболев А.В., Криволуцкая Н.А., Кузьмин Д.В. Петрология родоначальных расплавов и мантийных источников магм Сибирской трапповой провинции // Петрология. 2009. Т. 17, № 3. С. 276-310
Струнин Б.М., Дюжиков О.А., Бармина О.А., Комаров В.В. Геологическая карта Норильского района масштаба 1 : 200 000. M. : Геоинформмарк, 1994
Туровцев Д.М. Контактовый метаморфизм Норильских интрузий. М. : Научный мир, 2003. 319 с
Урванцев Н.Н. Некоторые вопросы формирования рудоносных интрузий и руд Норильска // Медно-никелевые руды Талнахского рудного узла. Л. : НИИГА, 1972. С. 100-105
Arndt N.T., Czamanske G.K., Walker R.G., Chauvel C., Fedorenko V.A. Geochemistry and origin of the intrusive hosts of the Noril'sk-Talnakh Cu-Ni-PGE sulfide deposits // Econ. Geol. 2003. V. 98 (3). P. 495-515
Ballhaus C., Berry R.F., Green D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. to Mineral. Petrol. 1991. V. 107 (1). P. 27-40
Barnes S.J., Godel B., Gurer D., Brenan J.M., Robertson J., Paterson D. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides // Econ. Geol. 2013. V. 108 (8). P. 1971-1982
Barnes S.J., Kunilov V.Y. Spinels and Mg ilmenites from the Noril'sk 1 and Talnakh intrusions and other mafic rocks of the Siberian flood basalt province // Econ. Geol. 2000. V. 95 (8). P. 1701-1717
Barnes S.J., Osborne G.A., Cook D., Barnes L., Maier W.D., Godel B. The Santa Rita nickel sulfide deposit in the Fazenda Mirabela intrusion, Bahia, Brazil: Geology, sulfide geochemistry, and genesis // Econ. Geol. 2011. V. 106 (7). P. 1083-1110
Barnes S.J., Roeder P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks //j. Petrol. 2001. V. 42 (12). P. 2279-2302
Batanova V.G., Sobolev A.V., Magnin V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy // IOP Conference Series: Materials Science and Engineering/ IOP Publishing, 2018. V. 304 (1). Art. 012001
Batanova V.G., Sobolev A.V., Kuzmin D.V. Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser // Chem. Geol. 2015. V. 419. P. 149-157
Chayka I.F., Kamenetsky V.S., Zhitova L.M., Izokh A.E., Tolstykh N.D., Abersteiner A., Lobastov B.M., Yakich T.Yu. Hybrid Nature of the Platinum Group Element Chromite-Rich Rocks of the Norilsk 1 Intrusion: Genetic Constraints from Cr Spinel and Spinel-Hosted Multiphase Inclusions // Econ. Geol. 2020b. V. 115 (6). P. 1321-1342
Chayka I.F., Zhitova L.M., Antsiferova T.N., Abersteiner A., Shevko A.Ya., Izokh A.E., Tolstykh N.D., Gora M.P., Chubarov V.M., Kamenetsky V.S. In-situ crystallization and continuous modification of chromian spinel in the “sulfide-poor platinum-group metal ores” of the Norilsk-1 intrusion (Northern Siberia) // Minerals. 2020a. V. 10. P. 498
Coogan L.A., Saunders A.D., Wilson R.N. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces // Chem. Geol. 2014. V. 368. P. 1-10
Coulthard Jr D.A., Zellmer G.F., Tomiya A., Jego S., Brahm R. Petrogenetic implications of chromite-seeded boninite crystallization experiments: Providing a basis for chromite-melt diffusion chronometry in an oxybarometric context // Geochim. Cosmochim. Acta. 2021. V. 297. P. 179-202
Czamanske G.K., Wooden J.L., Zientek M.L., Fedorenko V.A., Zen'ko T.E., Kent J., King B.W., Knight R.J., Siems D.F. Geochemical and isotopic constraints on the petrogenesis of the Noril'sk-Talnakh ore-forming system // Proc. Sudbury-Noril'sk Symp. Ontario, 1994. P. 313-343
Distler V.V, Kunilov V.E. Geology and ore deposits of the Noril'sk Region // Seventh International Platinum Symposium (Moscow-Noril'sk) : Field Trip Guidebook. 1994
Distler V.V., Sluzhenikin S.F., Cabri L.J., Krivolutskaya N.A., Turivtsev D.M., Golovanova T.A., Mokhov A.V., Knauf V.V., Oleshkevich O.I. Platinum Ores of the Noril'sk Layered Intrusions: Magmatic and Fluid Concentration of Noble Metals // Geol. Ore Depos. 1999. V. 41 (3). P. 214-237
Droop G.V.R. A general equation for estimating Fe 3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria // Mineral. Mag. 1987. V. 51 (361). P. 431-435
Duzhikov O.A., Distler V.V., Rylkova G., Naldrett A.J. Geology and Metallogeny of Sulfide Deposits Noril'sk Region USSR. Cleveland, OH : Society of Economic Geologists, 1992
Fedorenko V.A. Model of genetic relationship between flood basalts, ore-bearing intrusions and Cu-Ni-Pt ores in the Noril'sk region, NW Siberian platform, Russia, abstr 26 // International Platinum Symposium, 12th, Moscow, August 1-4, 1994 : Abstracts. 1994. P. 26
Fudali R.F. Oxygen fugacities of basaltic and andesitic magmas // Geochim. Cosmochim. Acta. 1965. V. 29 (9). P. 1063-1075
Genkin A.D., Evstigneeva V.L. Associations of platinum-group minerals of the Noril'sk copper-nickel sulfide ores // Econ. Geol. 1986. V. 81 (5). P. 1203-1212
Ivanov A.V., He H., Yan L., Ryabov V.V., Shevko A.Y., Palesskii S.V., Nikolaeva I.V. Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism // Earth-Science Rev. 2013. V. 122. P. 58-76
Jakobsson S., Oskarsson N. The system CO in equilibrium with graphite at high pressure and temperature: An experimental study // Geochim. Cosmochim. Acta. 1994. V. 58 (1). P. 9-17
Kamenetsky V.S., Crawford A.J., Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks //j. Petrol. 2001. V. 42 (4). P. 655-671
Krivolutskaya N.A. Formation of PGM-Cu-Ni deposits in the process of evolution of flood-basalt magmatism in the Noril'sk region // Geol. Ore Depos. 2011. V. 53 (4). P. 309-339
Krivolutskaya N.A. Siberian Traps and Pt-Cu-Ni deposits in the Noril'sk area. Springer, 2016. 364 p
Krivolutskaya N.A., Kuzmin D.V., Gongalsky B.I., Roschina I.A., Kononkova N.N., Svirskaya N.M., Romashova T.V. Stages of Trap Magmatism in the Norilsk Area: New Data on the Structure and Geochemistry of the Volcanic Rocks // Geochemistry Int. 2018. V. 56 (5). P. 419-437
Krivolutskaya N.A., Rudakova A.V. Structure and geochemical characteristics of trap rocks from the Noril'sk trough, Northwestern Siberian Craton // Geochemistry Int. 2009. V. 47 (7). P. 675-698
Krivolutskaya N.A., Sobolev A.V., Mikhailov V.N., Plechova A.A., Kostitsyn Yu.A., Roschina I.A., Fekiasova Z. Parental melt of the Nadezhdinsky Formation: Geochemistry, petrology and connection with Cu-Ni deposits (Noril'sk area, Russia) // Chem. Geol. 2012. V. 302. P. 87-105
Latypov R.M. Phase equilibria constraints on relations of ore-bearing intrusions with flood basalts in the Noril'sk region, Russia // Contrib. to Mineral. Petrol. 2002. V. 143 (4). P. 438-449
Latypov R. Noril'sk-and Lower Talnakh-type intrusions are not conduits for overlying flood basalts: insights from residual gabbroic sequence of intrusions // Appl. Earth Sci. 2007. V. 116 (4). P. 215-225
Latyshev A.V., Rad'ko V.A., Veselovskiy R.V., Fetisova A.M., Pavlov V.E. Correlation of the Permian-Triassic Ore-Bearing Intrusions of the Norilsk Region with the Volcanic Sequence of the Siberian Traps Based on the Paleomagnetic Data // Econ. Geol. 2020. V. 115 (6). P. 1173-1193
Li C., Ripley E.M., Naldrett A.J. A new genetic model for the giant Ni-Cu-pge sulfide deposits associated with the siberian flood basalts // Econ. Geol. 2009. V. 104 (2). P. 291-301
Lightfoot P.C., Keays R.R. Siderophile and chalcophile metal variations in flood basalts from the Siberian trap, Noril'sk region: Implications for the origin of the Ni-Cu-PGE sulfide ores // Econ. Geol. 2005. V. 100 (3). P. 439-462
Likhachev A.P. Ore-bearing intrusions of the Noril'sk region // Proc. Sudbury-Noril'sk Symp. Ontario, 1994. P. 185-202
Malitch K.N., Badanina I.Yu., Belousiva E.A., Tuganova E.V. Results of U-Pb dating of zircon and baddeleyite from the Noril'sk-1 ultramafic-mafic intrusion (Russia) // Russ. Geol. Geophys. 2012. V. 53. P. 123-130
Maurel C., Maurel P. Etude experimentale de la distribution du fer ferrique entre spinelle chromifere et bain silicate basique // Bull. mineralogie. 1984. V. 107 (1). P. 25-33
Myers J.T., Eugster H.P. The system Fe-Si-O: Oxygen buffer calibrations to 1,500 K // Contrib. to Mineral. Petrol. 1983. V. 82 (1). P. 75-90
Naldrett A.J., Asif M., Gorbachev N.S., Kunilov V.Y., Stekhin A.I., Fedorenko V.A., Lightfoot P.C. The composition of the Ni-Cu ores of the Oktyabr'sky deposit // Noril'sk Reg. Ontario Geol. Surv. Spec. 1994. V. 5. P. 357-371
Naldrett A.J., Lightfoot P.C., Fedorenko V., Doherty W., Gorbachev N.S. Geology and geochemistry of intrusions and flood basalts of the Noril'sk region, USSR, with implications for the origin of the Ni-Cu ores // Econ. Geol. 1992. V. 87. P. 975-1004
Nikolaev G.S., Ariskin A.A., Barmina G.S., Nazarov M.A., Almeev R.R. Test of the Ballhaus-Berry-Green Ol-Opx-Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel // Geochemistry Int. 2016. V. 54 (4). P. 301-320
O'Neill H.S.C. Free energies of formation of NiO, CoO, Ni2SiO4, and Co2SiO4 // Am. Mineral. 1987b. V. 72 (3-4). P. 280-291
O'Neill H.S.C. Quartz-fayalite-iron and quartz-fayalite-magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4) // Am. Mineral. 1987a. V. 72 (1-2). P. 67-75
Petry C., Chakraborty S., Palme H. Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation // Geochim. Cosmochim. Acta. 2004. V. 68 (20). P. 41794188
Ripley E.M., Lightfoot P.C., Li C., Elswick E.R. Sulfur isotopic studies of continental flood basalts in the Noril'sk region: Implications for the association between lavas and ore-bearing intrusions // Geochim. Cosmochim. Acta. 2003. V. 67 (15). P. 2805-2817
Ryabov V.V., Shevko A.Y., Gora M.P. Trap magmatism and ore formation in the Siberian Noril'sk region. Springer, 2014. 625 p
Sluzhenikin S.F., Yudovskaya M.A., Barnes S.J., Abramova V.D., Le Valliant M., Petrenko D.B., Grigor'eva A.V., Brovchenko V.D. Low-Sulfide Platinum Group Element Ores of the Norilsk-Talnakh Camp // Econ. Geol. 2020. V. 115 (6). P. 12671303
Sobolev A.V., Hoffman A.W., Kuzmin D.V., Yaxley G.M., Arnd N.T., Chung S.-L., Danyushevskiy L.V., Elliott T., Frey F.A., Garcia M.O. The amount of recycled crust in sources of mantle-derived melts // Science. 2007. V. 316 (5823). P. 412-417
Sobolev A.V., Sobolev S.V., Kuzmin D.V., Malitch K.N., Petrunin A.G. Siberian meimechites: origin and relation to flood basalts and kimberlites // Russian Geology and Geophysics. 2009. V. 50. P. 999-1033
Tolstykh N.D., Zhitova L.M., Shapovalova M.O., Chayka I.F. The evolution of the ore-forming system in the low sulfide horizon of the Noril'sk 1 intrusion, Russia // Mineral. Mag. 2019. V. 83 (5). P. 673-694
Tolstykh N., Krivolutskaya N., Safonova I., Shapovalova M., Zhitova L., Abersteiner A. Unique Cu-rich sulphide ores of the Southern-2 orebody in the Talnakh Intrusion, Noril'sk area (Russia): Geochemistry, mineralogy and conditions of crystallization // Ore Geol. Rev. 2020. V. 122. Art. 103525
Yao Z., Mungall J.E. Linking the Siberian Flood Basalts and Giant Ni-Cu-PGE Sulfide Deposits at Norilsk //j. Geophys. Res. Solid Earth. 2021. V. 126 (3). e2020JB020823
 Olivine and Cr-spinel from the Noril'sk-1 deposit: compositions and petrological implications | Geosphere Research. 2022. № 2. DOI: 10.17223/25421379/23/5

Olivine and Cr-spinel from the Noril'sk-1 deposit: compositions and petrological implications | Geosphere Research. 2022. № 2. DOI: 10.17223/25421379/23/5

Download full-text version
Counter downloads: 180