Pyrite typochemistry of the Sovetskoe gold deposit (Yenisei Ridge, Russia)
The results of studying the distribution of trace elements (LA-ICP-MS) in the pyrite of the Sovetskoye gold ore deposit (Yenisei Ridge, Russia) are presented. The Sovetskoye deposit is located in the northern part of the Yenisei Ridge and is one of the largest and most developed for a long time within the Yenisei gold province. The deposit belongs to the gold-quartz type, and the main sulfide mineral is pyrite. Until now, no information has been provided on the distribution of trace elements in the pyrite of the deposit. We have studied pyrite from the host shales, quartz veins and their selvages, as well as coarse-crystalline pyrite. Electron microscopic studies have shown that the content of iron and sulfur in the studied samples varies within (wt.%): Fe 42.67-48.47; S 50.61-55.04. The deficiency in the anionic and cationic parts for some samples is compensated by the presence of impurities of arsenic (0.48-3.02 wt.%) and cobalt (1.71-3.38 wt.%). Taking into account the isomorphism (Fe↔Co; S↔As), the S/Fe ratio averages 1.98, which indicates a high chemical stoichiometry of the mineral. A total of 67 point determinations of trace elements were performed using the LA-ICP-MS method. The most typical (~ 90 % analyzes) impurities are, ppm: Co ~ 0.2-1700.0; Ni ~ 1.8-1300; Zn ~ 1.2-80.0; Ge ~ 3.0-5.7; As ~ 1.4-3700.0; Se ~ 4.6-50; Pb ~ 0.1-390.0. More than 50 % of analyzes also contain, ppm: Cu ~ 0.6-1000.0; Ag ~ 0.2-10.0; Sb ~ 0.04-13.00; Bi ~ 0.1-25.0. In about one third of analyzes, Te ~ 1.0-7.0 ppm and Au ~ 0.1-1.3 ppm were found. In single analyzes are present, ppm: V ~ 0.1-5.0; Cr 7.0; Mn ~ 39.0-110.0; Ga ~ 0.3-1.2; In ~ 0.2-0.9; Sn ~ 0.2-0.6; W ~ 0.5-2.1; Tl ~ 0.1-0.3. Mo and Cd contents are below the detection limit in all analyzes. The "invisible" gold is enriched in pyrite from quartz veins (~ 0.56 ppm) and coarse-crystalline pyrite (~ 0.83 ppm). Mineral from selvages of quartz veins and host shales contains less Au (~ 0.15 and ~ 0.16 ppm). The position of the points of composition on the Au-As diagram below the line of structurally bound gold indicates its isomorphic nature. However, the established concentrations of the metal are not of industrial significance, and the bulk of the gold at the deposit is present in native form. The studied pyrite varieties are enriched in silver relative to gold (Au/Ag from 0.09 to 3.75), the excess of silver can be associated in the form of ultrafine particles of Au-Ag sulfides, or in the form of compounds with Te, Se, Sb, Bi. The most contrastingly studied pyrite varieties differ in the content of Se and As. Pyrite from the host shales is characterized by the highest As and Se contents. Pyrite from quartz veins contains minimal As concentrations. Coarse-crystalline pyrite occupies a region of low Se and As contents. Pyrite from selvage quartz veins has a variable composition. Based on the Se content in ore pyrite, the temperatures of mineral formation were established: pyrite from the host shales ~ 343 °C; coarse-crystalline pyrite ~ 417 °С; pyrite from quartz veins ~ 456 °С; pyrite from selvages of quartz veins ~ 439 °С. These parameters of mineral formation show a significant heterogeneity of the temperature field in the area of ore formation
Keywords
Sovetskoe gold deposit,
pyrite,
geochemistry,
"invisible" gold,
LA-ICP-MSAuthors
Silyanov Sergey A. | Siberian Federal University | silyanov-s@mail.ru |
Sazonov Anatoly M. | Siberian Federal University | sazonov_am@mail.ru |
Lobastov Boris M. | Siberian Federal University | lbm02@ya.ru |
Shadrina Daria A. | Siberian Federal University | dshadrina-gg18@mail.ru |
Tikhonova Ksenya A. | Siberian Federal University | tihonovakseniya94@mail.ru |
Medvedev Nikolay S. | Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences | medvedev@niic.nsc.ru |
Всего: 6
References
Бульбак Т.А., Томиленко А.А., Гибшер Н.А., Сазонов А.М., Шапаренко Е.О., Рябуха М.А., Хоменко М.О., Сильянов С.А., Некрасова Н.А. Углеводороды во флюидных включениях из самородного золота, пирита и кварца месторождения Советское (Енисейский кряж, Россия) по данным беспиролизной газовой хромато-масс-спектрометрии // Геология и геофизика. 2020. Т. 61, № 11. С. 1535-1560
Буряк В.А. Метаморфизм и рудообразование. М. : Наука, 1982. 256 с
Горностаев Н.Н. Золоторудное месторождение Советского рудника в Северо-Енисейской тайге // Труды треста «Золоторазведка» и НИГРИЗолото. 1936. № 3. С. 10-22
Ли Л.В. Золоторудные месторождения Енисейского кряжа // Геология и полезные ископаемые Центральной Сибири. Красноярск : КНИИГиМС, 2001. С. 184-222
Пальянова Г.А. Минералы золота и серебра в сульфидных рудах // Геология рудных месторождений. 2020. Т. 62, № 5. С. 426-449
Пальянова Г.А., Сазонов А.М., Журавкова Т.В., Сильянов С.А. Состав пирротина как индикатор условий минералообразования на золоторудном месторождении Советское (Енисейский кряж, Россия) // Геология и геофизика. 2019. № 7. С. 934-354
Петров В.Г. Условия золотоносности северной части Енисейского кряжа. Новосибирск : Наука, 1974. 138 с
Петровская Н.В. Золотое оруденение Енисейского кряжа и особенности процессов формирования золотых руд : автореф. дис. ... д-ра геол.-мин. наук. М., 1954. 86 с
Сазонов А.М. Геохимия золота в метаморфических толщах. Томск : Изд-во Том. политехн. ун-та, 1998. 168 с
Сазонов А.М., Ананьев А.А., Полева Т.В., Хохлов А.Н., Власов В.С., Звягина Е.А., Федорова А.В., Тишин П.А., Леонтьев С.И. Золоторудная металлогения Енисейского кряжа: геолого-структурная позиция, структурные типы рудных полей // Журнал Сибирского федерального университета. Техника и технологии. 2010. № 4. С. 371-395
Сазонов А.М., Сараев В.А, Ананьев А.А. Сульфидно-кварцевые месторождения золота в метаморфических толщах Енисейского кряжа // Геология и геофизика. 1991. № 5. С. 28-37
Томиленко А.А., Гибшер Н.А. Особенности состава флюида в рудных и безрудных зонах Советского кварц-золото-рудного месторождения, Енисейский кряж (по данным изучения флюидных включений) // Геохимия. 2001. № 2. С. 167-177
Томиленко А.А., Гибшер Н.А., Козьменко О.А., Палесский С.В., Николаева И.В. Лантаноиды во флюидных включениях, кварце и зеленых сланцах из золотоносных и безрудных кварцево-жильных зон Советского кварц-золоторудного месторождения, Енисейский кряж, Россия // Геохимия. 2008. № 4. P. 438-444
Arehart G.B., Chryssoulis S.L., Kesler S.E. Gold and arsenic in iron sulfides from sediment hosted disseminated gold deposits: Implication for depositional processes // Econ. Geol. Bull. Soc. Econ. Geology. 1993. V. 88. P. 171-185
Augustin J., Gaboury D. Multi-stage and multi-sourced fluid and gold in the formation of orogenic gold deposits in the world-class Mana district of Burkina Faso - Revealed by LA-ICP-MS analysis of pyrites and arsenopyrites // Ore Geol. Rev. 2019. V. 104. P. 495521
Belousov I., Large R.R., Meffre S., Danyushevsky L.V., Steadman J., Beardsmore T. Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: Implications for gold and copper exploration // Ore Geology Rev. 2016. V. 79. P. 474-499
Benzaazoua M., Marion P., Robaut F., Pinto A. Gold-bearing arsenopyrite and pyrite in refractory ores: analytical refinements and new understanding of gold mineralogy // Mineral. Mag. 2007. V. 71. P. 123-142
Chouinard A., Paquette J., Williams-Jones A.E. Crystallographic controls on trace-element incorporation in Auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina // Canadian Mineralogist. 2005. V. 43. P. 951-963
Conn C.D., Spry P.G., Layton-Matthews D., Voinot A., Koenig A. The effects of amphibolite facies metamorphism on the trace element composition of pyrite and pyrrhotite in the Cambrian Nairne Pyrite Member, Kanmantoo Group, South Australia // Ore Geology Rev. 2019. V. 114. P. 103-128
Cook N.J., Chryssoulis S.L. Concentrations of «Invisible Gold» in the common sulfides // Canadian Mineralogist. 1990. V. 28. P. 1-16
Dmitrijeva M., Cook N.J., Ehrig K., Ciobanu C.L., Metcalfe A.V., Kamenetsky M., Kamenetsky V.S., Gilbert S. Multivariate Statistical Analysis of Trace Elements in Pyrite: Prediction, Bias and Artefacts in Defining Mineral Signatures // Minerals. 2020. V. 10. P. 61
Deditius A.P., Utsunomiya S., Renock D., Ewing R.C., Ramana C.V., Becker U., Kesler S.E. A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance // Geochimica et Cosmochimica Acta. 2008. V. 72. P. 2919-2933
Dehnavi A.S., McFarlane C.R.M., Lentz D.R., Walker J.A. Assessment of pyrite composition by LA-ICP-MS techniques from massive sulfide deposits of the Bathurst Mining Camp, Canada: From textural and chemical evolution to its application as a vectoring tool for the exploration of VMS deposits // Ore Geology Rev. 2018. V. 92. P. 656-671
Gourcerol B., Kontak D.J., Petrus J.A. Thurston Application of LA ICP-MS analysis of arsenopyrite to gold metallogeny of the Meguma Terrane, Nova Scotia, Canada // Gondwana Res. 2020. V. 81. P. 265-290
Gregory D.D., Large R.R., Halpin J.A., Baturina E.L., Lyons T.W., Wu S., Danyushevsky L., Sack P.J., Chappaz A., Maslennikov V.V., Bull S.W. Trace Element Content of Sedimentary Pyrite in Black Shales // Econ. Geol. 2015. V. 110. P. 1389-1410
Keith M., Smith D.J., Jenkin G.R.T., Holwell D.A., Dye M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes // Ore Geol. Rev. 2018. V. 96. P. 269-282
Kuzmichev A.B., Sklyarov E.V. The Precambrian of Transangaria, Yenisei Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogen, or reworked margin of the Siberian craton? //j. Asian Earth Sci. 2016. V. 115. P. 419-441
Large R.R., Bull S.W., Maslennikov V.V. A Carbonaceous Sedimentary Source-Rock Model for Carlin-Type and Orogenic Gold Deposits // Econ. Geol. 2011. V. 106. P. 331-358
Large R.R., Maslennikov V.V. Invisible Gold Paragenesis and Geochemistry in Pyrite from Orogenic and Sediment-Hosted Gold Deposits // Minerals. 2020. V. 10. P. 339
Li N., Deng J., Yang L.-Q., Groves D.I., Liu X.-W., Dai W.-G. Constraints on depositional conditions and ore-fluid source for orogenic gold districts in the West Qinling Orogen, China: Implications from sulfide assemblages and their trace-element geochemistry // Ore Geology Rev. 2018. V. 102. P. 204-219
Maslennikov V.V., Maslennikova S.P., Large R.R., Danyushevsky L.V., Herrington R.J., Ayupova N.R., Zaykov V.V., Lein A.Yu., Tseluyko A.S., Melekestseva I.Yu., Tessalina S.G. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers // Ore Geol. Rev. 2017. V. 85. P. 64-106
McClenaghan S.H., Lentz D.R., Cabri L.J. Abundance and speciation of gold in massive sulfides of the Bathurst Mining Camp, New Brunswick, Canada // Canadian Mineralogist. 2004. V. 42. P. 851-871
Meffre S., Large R.R., Steadman J.A., Gregory D.D., Stepanov A.S., Kamenetsky V.S., Ehrig K., Scott R.J. Multi-stage enrichment processes for large gold-bearing ore deposits // Ore Geol. Rev. 2016. V. 76. P. 268-279
Merkulova M., Mathon O., Glatzel P., Rovezzi M., Batanova V., Marion P., Boiron M.-C., Manceau A. Revealing the Chemical Form of “Invisible” Gold in Natural Arsenian Pyrite and Arsenopyrite with High Energy-Resolution X- ray Absorption Spectroscopy // ACS Earth Space Chem. 2019. V. 3 (9). P. 1905-1914
Paktunc D., Kingston D., Pratt A., McMullen J. Distribution of gold in pyrite and in products of its transformation resulting from roasting of refractory gold ore // Can. Mineral. 2006. V. 44. P. 213-227
Pals D.W., Spry P.G., Chryssouls S. Invisible gold and tellurium in arsenic-rich pyrite from the Emperor gold deposit, Fiji: Implications for gold distribution and deposition // Econ. Geol. Bull. Soc. Econ. Geol. 2003. V. 98. P. 479-493
Pokrovski G.S., Kokh M.A., Proux O., Hazemann J.-L., Bazarkina E.F., Testemale D., Escoda C., Boiron M.-C., Blanchard M., Aigouy T., Gouy S., de Parseval P., Thibaut M. The nature and partitioning of invisible gold in the pyrite-fluid system // Ore Geol. Rev. 2019. V. 109. P. 545-563
Reich M., Kesler S.E., Utsunomiya S., Palenik C.S., Chryssoulis S.L., Ewing R.C. Solubility of gold in arsenian pyrite // Geochim. Cosmochim. Acta. 2005. V. 69. P. 2781-2796
Roman N., Reich M., Leisen M., Morata D., Barra F., Deditius A.P. Geochemical and micro-textural fingerprints of boiling in pyrite // Geochimica et Cosmochimica Acta. 2019. V. 246. P. 60-85
Shao Y.-J., Wang W.-S., Liu Q.-Q., Zhang Y. Trace Element Analysis of Pyrite from the Zhengchong Gold Deposit, Northeast Hunan Province, China: Implications for the Ore-Forming Process // Minerals. 2018. V. 8. P. 262
Simon G., Huang H., Penner-Hahn J.E., Kesler S.E., Kao L.-I. Oxidation state of gold and arsenic in gold-bearing arsenian pyrite // Am. Mineral. 1999. V. 84. P. 1071-1079
Simon G., Kesler S.E., Chryssoulis S. Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits // Econ. Geol. Bull. Soc. Econ. Geol. 1999. V. 94. P. 405-421
Sung Y.H., Brugger J., Ciobanu C.L., Pring A., Skinner W., Nugus M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia // Miner. Deposita. 2009. V. 44. P. 765-791
Tomilenko A.A., Gibsher N.A., Dublaynsky Y.V., Dallai L. Geochemical and isotopic properties of fluid from gold-bearing and barren quartz veins of the Sovetskoye deposit (Siberia, Russia) // Econ. Geology. 2010. V. 105. P. 375-394
Trigub A.L., Tagirov B.R., Kvashnina K.O., Chareev D., Nickolsky M., Shiryaev A.A., Baranova N., Kovalchuk E., Mokhov A. X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system // Am. Mineral. 2017. V. 102. P. 1057-1065
Voute F., Hagemann S.G., Evans N.J., Villanes C. Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source and gold deposition mechanisms // Mineralium Deposita. 2019. V. 54. P. 1077-1100
Wu Y.-F., Evans K., Li J.-Y., Fougerouse D., Large R.R., Guagliardo P. Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit // Geochim. Cosmochim. Acta. 2019. V. 245. P. 98-147
Xu N., Wu C.-l., Li S.-R., Xue B.-Q., He X., Yu Y.-L., Liu J.-Z. LA-ICP-MS in situ analyses of the pyrites in Dongyang gold deposit, Southeast China: Implications to the gold mineralization // China Geol. 2020. V. 1. P. 1-17