Carbon flows on the wetland complex ecosystems of the discontinuous permafrost zone of Western Siberia
Sensitive aquatic northern ecosystems containing peat soil with huge carbon pools are important components of the global carbon cycle. This deposit is a potential source of inorganic and organic carbon compounds exported from the palsa by atmospheric and water flows, with a possible climate change. Atmospheric and water flows are closely related to each other. The quality and quantity of organic matter can alter CO2 and CH4 emission from peatlands because soil organic matter mineralization contributes to soil respiration. They have a large impact on the carbon dioxide concentration - the most powerful greenhouse gas - in the atmosphere and, as a result, on the entire biogeochemical carbon cycle. In northern ecosystems with permafrost in the soil profile and because of its low sorption activity soil solution is the main connecting link between peatlands and water catchments. The study of their hydrochemistry is also important because it is the most sensitive indicator of transformations taking place in ecosystems; the chemical parameters of solutions react most quickly to all changes. The degradation of permafrost can affect both the value of exports and the composition of dissolved organic matter, while changing the hydrological regime, structure and functioning of associated ecosystems, as well as the landscapes of the territory. The aim of this study was to determine the regularities and factors of organic and inorganic carbon compounds redistribution in the ecosystems of the wetland complex (discontinuous permafrost zone of Western Siberia, Russia). There were measured CO2 and CH4 efflux and concentration, DOC (mg*L-1) and WEOC (mg*g-1 soil) content, environmental factors (vegetation cover, seasonal thawing, microrelief, temperature and water parameters). The carbon dioxide emission in the wetland complex is characterized by high variability and has no significant differences between the palsa (94 ± 48 mg CO2*m-2*h-1) and the fen (85 ± 25 mg CO2*m-2*h-1). Inorganic carbon (CO2) concentration is higher in peat soil solution compared to fen waters. Nevertheless, they both are a significant source of GHG to the atmosphere. The highest values are confined to the edge parts of palsa - it is “hot spots” of carbon exchange. As expected, there was a close interaction between CO2 emission and concentration (r = 0.802 at p = 0.05; n = 40). There is also a correlation between the CO2 concentration and environmental factors (soil temperature and moisture as well as the electric conductivity of water). Methane efflux is much less, it's 5,0 ± 3,1 mg CH4*m-2*h-1 on the fen and 0,4±0,1 mg CH4*m-2*h-1 on the palsa. There are significant differences between two ecosystems. Organic carbon compounds redistribution was estimated by the content of DOC&POC in soil solution and WEOC in soil extract. DOC concentration in the wetland complex waters in the range of 10-200 mg*L-1, POC concentration is less up to 100 times. Expectedly higher DOC values are characteristic of the palsa's soil waters as opposed to the fen waters. POC values in two ecosystems do not differ statistically. This may be due to the fact that mineral part of soil profile is frozen, which excludes the adsorption of organic material by mineral particles. The WEOC content in the palsa varies from 380 to 1900 mg*g-1 soil. The main factor controlling carbon fluxes and determining the soil functioning in ecosystems of the wetland complex of Western Siberia is the permafrost presence and depth of location.
Keywords
wetland complex,
DOC,
CO2 emission,
permafrostAuthors
Timofeeva Maria V. | V.V. Dokuchaev Soil Science Institute | mtimofeeva02@gmail.com |
Goncharova Olga Y. | Lomonosov Moscow State University | goncholgaj@gmail.com |
Matyshak Georgy V. | Lomonosov Moscow State University | matyshak@gmail.com |
Chuvanov Stanislav V. | V.V. Dokuchaev Soil Science Institute | stas.chuvanov@gmail.com |
Всего: 4
References
Бобрик А.А. Закономерности эмиссии парниковых газов почвами северотаежных и лесотундровых экосистем Западной Сибири : дис. ... канд. биол. наук. М.: МГУ, 2016. 166 с
Бобрик А.А., Рыжова И.И., Гончарова О.Ю., Матышак Г.В., Макаров М.И., Волкер Д.А. Эмиссия СО2 и запасы органического углерода в почвах северотаежных экосистем Западной Сибири в различных геокриологических условиях // Почвоведение. 2018. № 6. С. 674-682
Васильевская В.Д., Иванов В.В., Богатырев Л.Г. Почвы Севера Западной Сибири. М. : Изд-во Моск. ун-та, 1986
Глаголев М.В., Лебедев В.С., Наумов А.В., Инишева Л.И., Дементьева Т.В., Головатская Е.А., Ерохин В.Е., Шнырев Н.А., Муханов В.В., Ножевникова А.Н. Определение эмиссии и окисления метана некоторыми болотами Томской области // Функции почв в биосферно-геосферных системах : материалы междунар. симп. Москва, МГУ им. М.В. Ломоносова, 27-30 августа 2001 г. М. : МАКС Пресс, 2001. С. 148-149
Глаголев М.В., Смагин А.В. Количественная оценка эмиссии метана болотами: от почвенного профиля до региона (к 15-летию исследований в Томской области) // Роль почв в биосфере. Труды Института экологического почвоведения Московского университета. 2006. Вып. 7. С. 51-83
Глаголев М.В. Аннотированный список литературных источников по результатам экспериментальных измерений потоков парниковых газов (СН4 и СО2) из болот России // Динамика окружающий среды и глобальные изменения климата. 2010. Т. 1. С. 100-123
Глаголев М.В., Чистотин М.В., Шнырев Н.А., Сирин А.А. Летне-осенняя эмиссия диоксида углерода и метана осушенными торфяниками, измененными при хозяйственном использовании, и естественными болотами (на примере участка Томской области) // Агрохимия. 2008. № 5. C. 46-58
Головацкая Е.А., Дюкарев Е.А. Влияние ландшафтных и гидрометеорологических условий на эмиссию СО2 в торфоболотных экосистемах // Доклады Академии наук. 2008. Т. 418, № 4. С. 1-4
Гончарова О.Ю., Бобрик А.А., Матышак Г.В., Макаров М.И. Роль почвенного покрова в сохранении структурной и функциональной целостности северотаежных экосистем Западной Сибири // Сибирский экологический журнал. 2016. № 1. C. 3-12
Гончарова О.Ю., Матышак Г.В., Бобрик А.А., Тимофеева М.В., Сефилян А.Р. Оценка вклада корневого и микробного дыхания в общий поток СО2 из торфяных почв и подзолов севера Западной Сибири методом интеграции компонентов // Почвоведение. 2019. № 2. С. 234-245
Курганова И.Н. Эмиссия и баланс углерода в наземных экосистемах России : автореф. дис. ... д-ра биол. наук. М., 2010. 48 с
Матвеева Н.В. Реакция растительного покрова на деградацию жильных льдов в Арктике // Западносибирские торфяники и цикл углерода: прошлое и настоящее. М. : НИТГУ, 2017. С. 34-36
Матышак Г.В., Богатырев Л.Г., Гончарова О.Ю., Бобрик А.А. Особенности развития почв гидроморфных экосистем северной тайги Западной Сибири в условиях криогенеза // Почвоведение. 2017. № 10. С. 1155-1164
Москаленко Н.Г., Бляхарчук Т.А., Понамарева О.Е. и др. Комплексный мониторинг северотаежных геосистем Западной Сибири. Новосибирск : Изд-во СО РАН, 2012
Наумов А.В. Дыхание почвы: составляющие, экологические функции, географические закономерности. Новосибирск : Изд-во СО РАН, 2009. 208 с
Наумов А.В. Современные процессы газообмена в сфагновых болотах лесостепной зоны Барабы (Западная Сибирь) // Сибирский экологический журнал. 2011. Т. 18, № 5. С. 657-663
Перельман А.И. Геохимия ландшафта. М. : Высш. шк., 1975. 342 с
Покровский О.С., Широкова Л.С., Кирпотин С.Н. Микробиологические факторы, контролирующие цикл углерода в термокарстовых водных объектах Западной Сибири // Вестник Томского государственного университета. Биология. 2012. № 3. С. 199-217
Раудина Т.В., Лойко С.В., Крицков И.В., Лим А.Г. Сравнение состава почвенных вод мерзлых болот Западной Сибири, полученных различными // Вестник Томского государственного университета. Биология. 2016. № 3 (35). С. 26-42
Раудина Т.В. Состав и свойства жидкой фазы торфяных почв криолитозоны Западной Сибири : дис. ... канд. биол. наук. М. : НИТГУ, 2018. С. 1-186
Смагин А.В. Газовая фаза почв. М. : Изд-во Моск. ун-та, 2005. 301 с
Теория и практика химического анализа почв / под ред. Л. А. Воробьевой. М. : ГЕОС, 2006. 400 с
Carey S.K. Dissolved organic carbon fluxes in a discontinuous permafrost subarctic alpine catchment // Permafrost and Periglacial Processes. 2003. V. 14 (2). P. 161-171
Christ M.J., David M.B. Dynamics of extractable organic carbon in Spodosol forest floors // Soil Biol. Biochem. 1996. V. 28. P. 1171-1179
D'Acunha B., Morillas L., Black T.A., Christen A., Johnson M.S.Net Ecosystem Carbon Balance of a Peat Bog Undergoing Restoration: Integrating CO2 and CH4 Fluxes from Eddy Covariance and Aquatic Evasion with DOC Drainage Fluxes // Journal of Geophysical Research Biogeosciences. 2019. V. 124 (4). P. 884-901
Dawson H.J., Ugolini E.C., Hrutfiord B.F., Zachara J. Role of soluble organics in the soil processes of a podzol, Central Cascades, Washington // Soil Sci. 1978. V. 126. P. 290-296
Evans C., Monteith D., Cooper D. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts // Environmental Pollution. 2005. V. 137. P. 55-71
Fellman J.B., D'Amore D.V., Hood E., Boone R.D. Fluorescence characteristics and biodegradability of dissolved organic matter in forest and wetland soils from coastal temperate watersheds in southeast Alaska // Biogeochemistry. 2008. V. 88. P. 169-184
Fenner N., Freeman C. Drought-induced carbon loss in peatlands // Nature geoscience. 2011. V. 4. P. 895-900
Flessa H., Ludwig B., Heil B., Merbach W. The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance //j. Plant Nutr. Soil Sci. 2000. V. 163. P. 157-163
Freeman C., Evans C., Monteith D., Reynolds B., Fenner N. Export of organic carbon from peat soils // Nature. 2001. V. 412. P. 785-785
Frey K.E., McClelland J.W. Impacts of permafrost degradation on arctic river biogeochemistry // Hydrological Processes. 2009. 23L. Р. 169-182
Gandois L., Hoyt A.M., Hatte C., Jeanneau L., Teisserenc R., Liotaud M., Tananaev N. Contribution of Peatland Permafrost to Dissolved Organic Matter along a Thaw Gradient in North Siberia // Environmental Science & Technology. 2019. V. 53 (24). P. 1416514174
Glatzel S., Kalbitz K., Dalva M., Moore T. Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs // Geoderma. 2003. V. 113. P. 397-411
Goncharova O.Y., Matyshak G.V., Bobrik A.A. Moskalenko N.G., Ponomareva O.E. Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia // Eurasian Soil Science. 2015. V. 48 (12). P. 1329-1340
Halbedel S. Protocol for CO2 sampling in waters by the use of the headspace equilibration technique, based on the simple gas equation; second update. Nature Publishing Group, a division of Macmillan Publishers Limited, 2018
Hope D., Billet M.F., Cresser M.S. A review of the export of carbon in river water: fluxes and processes // Environmental Pollution 1994. V. 84. P. 301-324
Hope D., Palmer S.M., Billett M.F., Dawson J.J.C. Variations in dissolved CO2 and CH4 in a headwater catchment: an investigation of soilstream linkages // Hydrological Process. 2004. V. 18. P. 55-75
Jones J.B., Mulholland P.J. Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water // Biogeochemistry. 1998. V. 40. P. 57-72
Kaiser K., Guggenberger G., Haumaier L., Zech W. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, Germany // Biogeochemistry. 2001. V. 55. P. 103-143
Karlsson J., Christensen T.R., Crill P., Forster J., Hammarlund D., Jackowicz-Korczynski M., Kokfelt U., Roehm C., Rosen P. Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment //j. Geophys. Res. 2010. V. 115
Kling G.W., Kipphut G.W., Miller M.C. Arctic lakes and streams as conduits to the atmosphere: implications for tundra carbon budgets // Science. 1991. V. 251. P. 298-301
Limpens J., Berendse F., Blodau C., Canadell J. G., Freeman C., Holden J., Roulet N., Rydin H., and Schaepman-Strub G. Peatlands and the carbon cycle: from local processes to global implications - a synthesis // Biogeosciences. 2008. V. 5. P. 1475-1491
Lofts S., Woof C., Tipping E., Clarke N. Mulder J. Modelling pH buffering and aluminium solubility in European forest soils // European Journal of Soil Science. 2001. V. 52. P. 189-204
McDowell W.H., Likens G.E. Origin, composition, and flux of dissolved organic carbon in the Hubbard Brook valley // Ecological Monographs. 1988. V. 58. P. 177-195
Michalzik B., Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem // Europ. J. Soil Sci. 1999. V. 50 (4). P. 579-590
Moore T.R., Pare D., Boutin R. Production of dissolved organic carbon in Canadian forest soils // Ecosystems. 2008. V. 11. P. 740-751
Neff J.C., Asner G.P. Dissolved organic carbon in terrestrial ecosystems: Synthesis and a model // Ecosystems. 2001. V. 4. P. 2948
Nasholm T., Ekblad A., Nordin A., Giesler R., Hogberg M., Hogberg P. Boreal forest plants take up organic nitrogen // Nature. 1998. V. 392. P. 914-916
Nilsson M., Mikkela C., Sundh 1, Granberg G., Svensson B.H., Ranneby B. Methane emission from Swedish mires: National and regional budgets and dependence on mire vegetation // Journal of Geophysical Research: Atmospheres. 2001. V. 106 (D18). P. 20847-20860
Olefeldt D., Roulet N.T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex //j. Geophys. Res. 2012. V. 117
Pagano T., Bida M., Kenny J.E. Trends in Levels of Allochthonous Dissolved Organic Carbon in Natural Water: A Review of Potential Mechanisms under a Changing Climate // Water. 2014. V. 6. P. 2862-2897
Petrone K.C., Jones J.B., Hinzman L.D., Boone R.D. Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost // Journal of Geophysical Research. 2006. V. 111: G02020
Regina K., Pihlatie M., Esala M., Alukukku L. Methane fluxes on boreal arable soils // Agricult. Ecosyst. Environ. 2007. V. 119. P. 346-352
Schnitzer M., Khan S.U. Humic substances in the environment. Marced Dekkar. New York, 1972
Stumm W., Morgan J.J. Aquatic Chemistry. 2nd ed. New York : John Wiley & Sons, 1981
Raulund-Rasmussen K., Borrggaard O.K., Hansen H.C.B., Olsson M. Effect of natural soil solutes on weathering rates of soil minerals // Eur. J. Soil Sci. 1998. V. 49. P. 397-406
Sobek S., Algesten G., Bergstrom A.K., Jansson M., Tranvik L. J. The catchment and climate regulation of pCO2 in boreal lakes // Global Change Biol. 2003. V. 9. P. 630-641
Tans P.P., Fung I.Y., Takahashi T. Observational constraints on the global atmospheric CO2 budge // Science. 1990. No. 247. P. 1431-1438
Tarnocai C., Canadell J.G., Schuur E.A.G., Kuhry P., Mazhitova G., Zimov S. Soil organic carbon pools in the northern circumpolar permafrost region // Global Biogeochem. Cycles. 2009. V. 23
Wetzel R.G. Limnology. 2nd ed. Philadelphia, PA : Saunders College Publishing, 1983
Wetzel R.G., Likens G.E. Limnological Analysis. 2nd ed. New York : Springer-Verlag, 1991
White J.R., Shannon R.D., Weltzin J.F., Pastor J., Bridgham S.D. Effects of soil warming and drying on methane cycling in a northern peatland mesocosm study //j. Geophys. Res. G: Biogeo. 2008. V. 113: G00A06
Woo M. Permafrost hydrology in North America // Atmosphere Ocean. 1986. V. 24, No. 3. Р. 201-234
Xu J.G., Juma N.G. Aboveand below-ground transformation of photosynthetically fixed carbon by two barley (Hordeum vulgare L.) cultivars in a Typic Cryoboroll // Soil Biol. Biochem. 1993. V. 25. P. 1263-1272
Yamazaki Y., Kubota J., Ohata T., Vuglinsky V., Mizuyama T. Seasonal changes in runoff characteristics on a permafrost watershed in the southern mountainous region of eastern Siberia // Hydrological Processes. 2005. No. 20. P. 453-467
Zsolnay A. Dissolved humus in soil waters // Humic substances in terrestrial ecosystems / ed. by A. Piccolo. Amsterdam : Elsevier. 1996. P. 171-223