Neural network detection of potential thunderstorm zones from remote sensing data | Geosphere Research. 2022. № 3. DOI: 10.17223/25421379/24/11

Neural network detection of potential thunderstorm zones from remote sensing data

Convection origination on the territory of Eurasia is noted up to 65-67° north latitudes, as noted in the annual reports on thunderstorm registration by Vaisala. Registration of thunderstorms by geostationary satellites in this territory is difficult. Therefore, the question of using satellite data from polar-orbiting spacecraft to monitor zones of convection development is relevant. The objectives of this study were to develop an architecture of algorithms for detection of atmospheric phenomena based on machine learning and neural networks, creation and training of algorithms for thunderstorm detection using ERA5 reanalysis data and further verification of the obtained algorithms and models on satellite sensing data of the MIRS program complex. The technology of selecting probable zones of thunderstorm development from satellite sensing data is a model of probabilistic detection of the presence or absence of atmospheric phenomena. With the help of calculations, the zones in which the atmospheric parameters more or less correspond to the conditions under which the hydrometeorological phenomena can form are highlighted. Calculations are carried out with the help of machine learning technology and neural networks. The paper presents the architecture of an algorithm for thunderstorm detection based on machine learning and neural network technology. A fully connected neural network is used, where the output signal of each neuron is fed as an input signal to all subsequent neurons. The neural network includes forty input neurons, twenty neurons on the first hidden layer, fifteen neurons on the second hidden layer, and two neurons corresponding to the necessary classification - presence/absence of thunderstorm on the output layer. The activation function on the hidden layers is Rectified linear unit (ReLU), the activation function on the output layer is Softmax. The algorithm was trained on the data of reanalysis ERA5 and verified on the data of satellite sounding of program complex MIRS which uses microwave measurements of AMSU/MHS devices of NOAA series, MetOp and ATMS device of Suomi NPP. Based on the results of the analysis of a number of data that were not involved in the model development and training process for May-October 2019-2020, an accuracy of 84 % was obtained. Additionally, tests were conducted on 109 meteorological stations located within the boundaries of 49.9°-60.35° N and 75.68°-88.67° E. For the periods: April-September 2021, the predictability value indicates that 96 % of the events are successfully classified (presence/absence of thunderstorms). The presented algorithm is dynamic. The learning procedure can be reinitialized when enough data is accumulated. This will allow us to take into account the appearance of new extremes of atmospheric characteristics. The use of the presented algorithm and the results of its calculations is promising as an additional tool for operational work.

Download file
Counter downloads: 24

Keywords

hazard phenomena, ERA5 reanalysis, thunderstorm detection, convective cloudiness

Authors

NameOrganizationE-mail
Chursin Vladislav V.National Research Tomsk State Universityskriptym@mail.ru
Kuzhevskaia Irina V.National Research Tomsk State Universityirina-kuz@vtomske.ru
Всего: 2

References

Абдуллаев С.М., Ленская О.Ю., Желнин А.А. Структура мезомасштабных конвективных систем в Центральной России // Метеорология и гидрология. 2012. № 1. С. 20-32
Алексеева А.А., Бухаров М.В. Диагноз гроз по синхронной информации спутниковых радиометров микроволнового и инфракрасного диапазонов // Метеорология и гидрология. 2005. № 6. С. 29-37
Алексеева А.А., Бухаров М.В., Лосев В.М., Соловьев В.И. Диагноз осадков и гроз по измерениям уходящего теплового излучения облачности с геостационарных спутников // Метеорология и гидрология. 2006. № 8. С. 33-42
Булыгина О.Н., Веселов В.М., Разуваев В.Н., Александрова Т.М. Описание массива срочных данных об основных метеорологических параметрах на станциях России. Свидетельство о государственной регистрации базы данных № 2014620549. URL: http://meteo.ru/data/163-basic-parameters#оnисание-массива-данных
Бухаров М.В. Диагноз вероятности гроз по спутниковой информации // Метеорология и гидрология. 2013. № 8. С. 5-16
Горбатенко В.П., Кужевская И.В., Пустовалов К.Н., Чурсин В.В., Константинова Д.А. Оценка изменчивости конвективного потенциала атмосферы в условиях изменяющегося климата Западной Сибири // Метеорология и гидрология. 2020. № 5. С. 108-117
Джулли А., Пал С. Библиотека Keras - инструмент глубокого обучения. Реализация нейронных сетей с помощью библиотек Theano и TensorFlow. М. : ДМК-Пресс, 2017. 294 с
Иванова А.Р. Мировой опыт наукастинга грозовой деятельности // Метеорология и гидрология. 2019. № 11. С. 71-83
Орельен Ж. Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow. Концепции, инструменты и техники для создания интеллектуальных систем. М. : Вильямс, 2018. 688 с
РД 52.27.284-91. Методические указания. Проведение производственных (оперативных) испытаний новых и усовершенствованных методов гидрометеорологических и гелиографических прогнозов. Л. : Гидрометеоиздат, 1991
Чернокульский А.В., Козлов Ф.А., Золина О.Г., Булыгина О.Н., Семенов В.А. Климатология осадков разного генезиса в Северной Евразии // Метеорология и гидрология. 2018. № 7. С. 5-18
Algorithm Theoretical Basis Document. Microwave Integrated Retrieval System (MIRS) // NOAA. NESDIS (STAR). 2006. 39 p
del Moral A., Rigo T., Llasat M.C. A radar-based centroid tracking algorithm for severe weather surveillance: Identifying split/merge processes in convective systems // Atmospheric Research. 2018. V. 213. P. 110-120
Galanaki E. et al. Thunderstorm climatology in the Mediterranean using cloud-to-ground lightning observations //Atmospheric Research. 2018. V. 207. P. 136-144
Goodman S.J. et al. GLM lightning cluster-filter algorithm, Algorithm Theoretical Basis Document // NOAA NESDIS Center for Satellite Applications and Research. Washington, DC, Ver. 2012. V. 3. P. 73
Grassotti C., Liu S., Liu Q., Boukabara S.-A., Garrett K., Iturbide-Sanchez F., Honeyage R. Precipitation Estimation from the Microwave Integrated Retrieval System (MiRS) // Satellite Precipitation Measurement. 2020. V. 1. P. 153-168
Hersbach H., Bell B., Berrisford P., Hirahara S., Horanyi A., Munoz-Sabater J., Thepaut J.N. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146, No. 730. P. 1999-2049
Lee J. G. et al. Improvement of the rapid-development thunderstorm (RDT) algorithm for use with the GK2A satellite // Asia-Pacific Journal of Atmospheric Sciences. 2020. V. 56, No. 2. P. 307-319
Mecikalski J. R. et al. Cloud-top properties of growing cumulus prior to convective initiation as measured by Meteosat Second Generation. Part I: Infrared fields // Journal of Applied Meteorology and Climatology. 2010. V. 49, No. 3. P. 521-534
Meng Q., Yao W., Xu L. Development of lightning nowcasting and warning technique and its application // Advances in meteorology. 2019. V. 2019
Network V.L.D. Total Lightning Statistics 2021: Vaisala Annual Lightning Report
User Manual. Microwave Integrated Retrieval System (MIRS) // NOAA. NESDIS (STAR). 2016. V. 1.13. 87 p
 Neural network detection of potential thunderstorm zones from remote sensing data | Geosphere Research. 2022. № 3. DOI: 10.17223/25421379/24/11

Neural network detection of potential thunderstorm zones from remote sensing data | Geosphere Research. 2022. № 3. DOI: 10.17223/25421379/24/11

Download full-text version
Counter downloads: 307