Estimation of evaporation in the Aktru mountain-glacier basin based on actual data and geoinformation modeling
Monitoring and modeling of potential evaporation are necessary to understand completely the factors which influence hydrological regime of the high-mountain basin. Under conditions of the extremely poorly hydrometeorological information to calculate evaporation at the mountain territory, it is advisable to apply the combined method using direct network measurement of standard pan-evaporators, meteorological monitoring, as well as modern software tools of the modeling environment conditions and factors controlling the process. Aktru mountain-glacier basin was chosen as the territory of the study because it is typical for the Central Altai. The calculation of the actual evaporation from the water surface was carried out on two water-evaporation sites located in different landscape-altitude zones and equipped with standard GGI-3000 pan-evaporators. Based on the measured temperature gradients and the coefficient of daily anisotropic heating, the spatial distribution of temperatures of the surface air layer was calculated in the form of GRID matrices. Based on the digital elevation model in the SAGA GIS package, the indicators of sunshine time and the coefficients of the spatial distribution of potential incoming solar radiation over the studied basin were calculated. The calculation of evaporation from the water surface was carried out using L. Turk's and N.N. Ivanov's empirical formulas. Verification of GIS-based modeling was carried out under direct observations in the summer of 2022 in the Aktru mountain-glacial basin. It is important to note that in Aktru, June turned out to be the warmest month of 2022. A relationship has been established between evaporation from standard evaporators and climatic factors. It has been revealed that evaporation may increase with elevation. Partly, this fact can be explained by the local conditions of the location of the equipment. Thus, on the Goluboye Lake, there is a high wind speed and an increased incoming total solar radiation compared to the Aktru hydrometeorological station, which located in a valley depression. The results of the study are important for building a regional model of the hydrological cycle of the Altai mountain-glacial basins.
Keywords
potential evaporation,
mountain glacial basin,
pan evaporation,
solar irradiance,
digital elevation model,
climate changeAuthors
Erofeev Alexander A. | National Research Tomsk State University | erofeew@yandex.ru |
Kopysov Sergei G. | National Research Tomsk State University; Institute of Monitoring of Climatic and Ecological Systems (IMCES) SB RAS | wosypok@mail.ru |
Garmaeva Tuyana B. | National Research Tomsk State University | tuyana2000garmaeva@yandex.ru |
Всего: 3
References
Белова Н.И. Солнечная радиация в долине р. Актру // Гляциология Алтая. 1965. Вып. 4. С. 172-189
Винников С. Д., Викторова Н.В. Физика вод суши. СПб. : РГГМУ, 2009. 430 с
Галахов В.П., Мухаметов Р.М. Ледники Алтая. Новосибирск : Наука, 1999. 136 с
Ерофеев А.А., Копысов С.Г., Никифоров А.Н. Ландшафтно-геофизический подход к зонированию структуры землепользования на малом водосборе // Известия ТПУ. Инжиниринг георесурсов. 2018. Т. 329, № 6. С. 39-47
Ерофеев А. А., Копысов С.Г., Локтионова Т.А. Пространственно-временная динамика элементов гидрологического цикла репрезентативных водосборов рек равнинной и высокогорной Арктики // Свидетельство о государственной регистрации базы данных № 2020622173 от 06.11.2020
Ледники Актру (Алтай) / под ред. Д.А. Буракова. Л. : Гидрометеоиздат, 1987. 118 с
Копысов С.Г. Ландшафтная гидрология геосистем лесного пояса Центрального Алтая. Deutschland: LAMBERT Academic Publishing, 2011, 150 с
Кутузов С.С., Ерофеев А.А., Лаврентьев И.И., Смирнов А.М., Копысов С.Г., Аббасов З.Р., Никитин К.А. Восстановлены наблюдения на ледниках Актру на Алтае // Лед и Снег. 2019. № 59 (3). Р. 306. doi: 10.15356/2076-6734-2019-3-469
Мезенцев А.В. Методика расчета водного баланса горных водосборов // Вопросы географии Сибири. Вып. 24. Томск : Изд-во ТГУ, 2001. С. 489-491
Наставление гидрометеорологическим станциям и постам. Вып. 7, ч. II: Наблюдения за испарением с водной поверхности. Л. : Гидрометеоиздат, 1985. 104 с
Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Вып. 20. СПб. : Гидрометеорологическое издательство, 1993. 716 с
Руководство по мониторингу составляющих водного баланса высокогорных водосборных бассейнов Алтае-Саянского экорегиона в условиях изменения климата / В.П. Галахов, С.Ю. Самойлова; Всемирный фонд дикой природы (WWF России). Проект ПРООН/ГЭФ/МКИ «Сохранение биоразнообразия в российской части Алтае-Саянского экорегиона». М., 2011. 36 с
Семенова К. С. Оценка формулы определения испаряемости для создания осушительно-увлажнительных земель на осушенных торфяниках Мещерской низменности // Природообустройство. 2019. № 4. С. 23-28. doi: 10.34677/1997-6011/2019-4-23-29
Севастьянов В.В. Климат высокогорных районов Алтая и Саян. Томск : Изд-во ТГУ, 1998. 201 с
Тронов М.В. Ледники и климат. Л. : ГИМИЗ, 1966. 408 с
Тронов М.В. Репрезентативный горно-ледниковый бассейн Актру на Алтае. МГИ, № 14. М., 1968. C. 197-201. Щетинников А. С. Ледники бассейна реки Пскем. Л. : Гидрометеоиздат, 1976. 120 с
Boehner J., Antonic O. Land-surface parameters specific to topo-climatology // Geomorphometry - Concepts, Software, Applications. Developments in Soil Science. 2009. V. 33. P. 195-226. doi: 10.1016/S0166-2481(08)00008-1
Erofeev A. A., Kopysov S.G. Modeling of Hydrological and Climatic Resources of the Landscape for Sustainable Land Use at Small Watersheds // Landscape Patterns in a Range of Spatio-Temporal Scales, Landscape Series 26, Springer Nature Switzerland AG, 2020. P. 163-175
Liu Y., Qiu G., Zhang H. et al. Shifting from homogeneous to heterogeneous surfaces in estimating terrestrial evapotranspiration: Review and perspectives // Sci. China Earth Sci. 2022. V. 65. P. 197-214. doi: 10.1007/s11430-020-9834-y
Lu Y., Wang Y., Liu Q., Chen X., Zhang Y., Gao L., Chen Y., Liu M, Deng H. Evapotranspiration Variations of the Minjiang River Basin in Southeastern China from 2000 to 2019 // Atmosphere. 2022. V. 13. Р. 562. doi: 10.3390/atmos13040562
Narozhniy Yu., Zemtsov V. Current State of the Altai Glaciers (Russia) and Trends over the Period of Instrumental Observations 1952-2008 // AMBIO. 2011. V. 40. P. 575-588
Monteith J.L. Evaporation and environment // Symp Soc Exp Biol. 1965. V. 19. P. 205-234
NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for 2021. Online January 2021. Retrieved on June 28, 2022. URL: https://www.ncdc.noaa.gov/sotc/global/202113
Peterson T., Golubev V., Groisman P. Evaporation losing its strength // Nature. 1995. V. 377. P. 687-688. doi: 10.1038/377687b0
Roderick ML., Farquhar G.D. The Cause of Decreased Pan Evaporation over the Past 50 Years // Science. 2002. V. 298. P. 1410-1411
Turc L. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date // Annals of Agronomy. 1961. V. 12. P. 13-49