Climatal signal in different paramers of tree-rings of pine in the Solovetsky Archipelago | Geosphere Research. 2022. № 4. DOI: 10.17223/25421379/25/10

Climatal signal in different paramers of tree-rings of pine in the Solovetsky Archipelago

The dendroclimatic analysis of Scots pine (Pinus sylvestris L.) growing on the Solovetsky Archipelago is presented in the paper. Based on the measurements of tree-ring parameters, four chronologies lasting 175 years were developed: 1) the annual ring width, 2) the earlywood and 3) latewood widths, 4) and the Blue Intensity. Tree-ring width is the most commonly measured parameter. Blue Intensity is a surrogate for maximum (X-ray) density (MXD). A correlation analysis carried out between the chronologies showed significant coefficients among themselves. The response function analysis was applied for each chronology. Each tree-ring parameter is controlled by different climatic factors. It has been established that the tree-ring width and the earlywood width are negatively affected by the summer temperatures of the previous year, and positively influenced by precipitation of the current year. The temperatures of March, May and July, as well as the precipitation of July of the current year, are important for the formation of latewood. In addition, a more detailed dendroclimatic analysis was carried out, namely, the calculation of partial correlations, which show the influence of primary and secondary climatic factors on the chronology. As a result of the analysis, the influence of July precipitation on the growth of latewood was found. This association is significant even when both primary and secondary variables are used. The relationship between the Blue Intensity and climatic parameters is significantly different. It is characterized by high correlation coefficients with the temperature of the warm period (April - September). The climatic signal inferred in Blue Intensity shows more temporal stability compared to other studied tree-ring parameters. The obtained for Solovetsky Archipelago do not contradict with previous findings in neighboring regions, for example, in Fennoscandia. Comparing the signal strength and temporal stability in various tree-ring parameters, it can be confidently stated that Blue Intensity is the most promising parameter for developing a paleoclimatic reconstruction in the Solovetsky Archipelago.

Download file
Counter downloads: 45

Keywords

dendrochronology, the Solovetsky archipelago, climatic response function, tree-ring width, blue intensity

Authors

NameOrganizationE-mail
Semenyak Nadezhda S.Institute of Geography, Russian Academy of Sciencessemenyak@igras.ru
Solomina Olga N.Institute of Geography, Russian Academy of Sciencessolomina@igras.ru
Dolgova Ekaterina An.Institute of Geography, Russian Academy of Sciencesdolgova@igras.ru
Matskovsky Vladimir V.Institute of Geography, Russian Academy of Sciencesmatskovsky@igras.ru
Всего: 4

References

Богуславский Г. А. Острова Соловецкие: очерки. Архангельск : Северо-Западное книжное изд-во, 1966. 173 с
Ваганов Е.А., Шиятов С.Г., Мазепа В. С. Дендроклиматические исследования в Урало-Сибирской субарктике. Новосибирск : Наука, 1996. 246 c
Долгова Е.А., Соломина О.Н., Мацковский В.В., Добрянский А.С., Семеняк Н.С., Шпунт С.С. Пространственная изменчивость прироста сосны на Соловецких островах // Известия Российской академии наук. Серия географическая. 2019. № 2. С. 41-50
Ипатов Л.Ф., Косарев В.П, Проурзин Л.И., Торхов С.В. Леса Соловецкого архипелага. Архангельск : СОЛТИ, 2009. 244 с
Колосова Г.Н. Природно-географический анализ исторических территорий: Соловецкий архипелаг. Труды Соловецкого отряда Морской арктической комплексной экспедиции. М. : РНИИ КПН, 1999. 111 с
Кононов Ю.М. Пространственные особенности температурного режима теплого сезона в пределах материковой части Российской Арктики в течение последних 500 лет // Известия Российской академии наук. Серия географическая. 2018. № 2. С. 48-58
Ловелиус Н.В., Соболев А.Н., Феклистов П.А. Черты единства в приросте сосны и ели на Соловецком архипелаге и факторы среды // Общество. Среда. Развитие (Terra Humana). 2012. № 4. C. 262-267
Мацковский В.В. Климатический сигнал в ширине годичных колец хвойных деревьев на севере и в центре европейской территории России. М. : ГЕОС, 2013. 148 с
Природная среда Соловецкого архипелага в условиях меняющегося климата / под ред. Ю.Г. Шварцмана и И.Н. Болотова. Екатеринбург : Изд-во УрО РАН, 2007. 184 с
Соболев А.Н., Феклистов П.А. Структура, состояние и характер роста древостоев основных лесооборазующих пород Соловецкого архипелага // Соловецкий сборник. Вып. 7. Архангельск, 2011. С. 76-88
Соломина О.Н., Мацковский В.В., Жуков Р.С. Дендрохронологические «летописи». «Вологда» и «Соловки» как источник данных о климате последнего тысячелетия // Доклады Академии наук. 2011. T. 439, № 2. С. 1104-1109
Шиятов С.Г., Ваганов Е.А., Кирдянов А.В., Круглов В.Б., Мазепа B.C., Наурзбаев М.М., Хантемиров P.M. Методы дендрохронологии. Ч. I: Основы дендрохронологии. Сбор и получение древесно-кольцевой информации : учеб.-метод. пособие. Красноярск : КрасГУ, 2000. 80 с
Anchukaitis K.J., Wilson R., Briffa K.R., Buntgen U., Cook E.R., D'Arrigo R. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions // Quaternary Science Reviews. 2017. V. 163. P. 1-22
Arbellay E., Jarvis 1, Chavardes R.D., Daniels L.D., Stoffel M. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width // Tree Physiology. 2018. V. 38. No. 8. P. 1237-1245
Beck P.S., Andreu-Hayles L., D'Arrigo R., Anchukaitis K.J., Tucker C.J., Pinzo, J.E., Goetz S.J. A large-scale coherent signal of canopy status in maximum latewood density of tree rings at arctic treeline in North America // Global and Planetary Change. 2013. V. 100. P. 109-118
Bjorklund J.A., Gunnarson B.E., Seftigen K., Esper J., Linderholm H.W. Blue intensity and density from northern Fen-noscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information // Climate of the Past. 2014. V. 10 (2). P. 877-885
Bjorklund J., Gunnarson B.E., Seftigen K., Zhang P., Linderholm H.W. Using adjusted blue intensity data to attain highquality summer temperature information: A case study from Central Scandinavia // The Holocene. 2015. V. 25 (3). P. 547-556
Bjorklund J., Seftigen K., Schweingruber F., Fonti P., von Arx G., Bryukhanova M.V. Cell size and wall dimensions drive distinct variability of earlywood and latewood density in Northern Hemisphere conifers // New Phytologist. 2017. V. 216 (3). P. 728-740
Bjorklund J.A., Gunnarson B.E., Krusic P.J., Grudd H., Josefsson T., Ostlund L., Linderholm H.W. Advances towards improved low-frequency tree-ring reconstructions, using an updated Pinus sylvestris L. MXD network from the Scandinavian Mountains // Theoretical and applied climatology. 2013. V. 113 (3). P. 697-710
Briffa K., Jones P.D. Basic chronology statistics and assesment, in: Methods of Dendrochronology // Applications in the Environmental Sciences. H. 137-152. doi: 10.1007/978-94-015-7879-0
Briffa K.R. Basic chronology statistics and assessment // Methods of dendochronology. 1990
Briffa K.R. A 1,400-year tree-ring record of summer temperatures in Fennoscandia // Nature. 1990. V. 346. P. 434-439
Briffa K.R., Schweingruber F., Jones P., Schweingruber F.H., Jones P.D., Osborn T.J., Shiyatov S.G., Vaganov E.A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes // Nature. 1998. V. 391, No. 6668. P. 678-682
Briffa K.R., Osborn T., Schweingruber F. Large-scale temperature inferences from tree rings: a review // Global and planetary change. 2004. V. 40. P. 11-26
Campbell R., McCarroll D., Loader N.J., Grudd H., Robertson I., Jalkanen R. Blue intensity in Pinus sylvestris tree-rings: Developing a new palaeoclimate proxy // The Holocene. 2007. V. 17 (6). P. 821-828
Buckley B.M., Hansen K.G., Griffin K.L., Schmiege S., Oelkers R., D'Arrigo R.D. Blue intensity from a tropical conifer's annual rings for climate reconstruction: An ecophysiological perspective // Dendrochronologia. 2018. V. 50. P. 10-22
Bunn A.G. A dendrochronology program library in R (dplR) // Dendrochronologia. 2008. V. 26 (2). P. 115-124
Clauson M.L., Wilson J.B.Comparison of video and x-ray for scanning wood density // Forest products journal (USA). 1991
Cook E.R., Seager R., Kushnir Y., Briffa K.R., Buntgen U., Frank D., Krusic P.J., Tegel W., van der Schrier G., Andreu-Hayles L., Baillie M, Baittinger C., Bleicher N., Bonde N., Brown D., Carrer M, Cooper R., Cufar K., Dittmar C., Esper J., Griggs C., Gunnarson B., Gunther B., Gutierrez E., Haneca K., Helama S., Herzig F., Heussner K.-U., Hofmann J., Janda P., Kontic R., Kose N., Kyncl T., Levanic T., Linderholm H., Manning S., Melvin T.M., Miles D., Neuwirth B., Nicolussi K., Nola P., Panayotov M., Popa I., Rothe A., Seftigen K., Seim A., Svarva H., Svoboda M., Thun T., Timonen M., Touchan R., Trotsiuk V., Trouet V., Walder F., Wazny T., Wilson R., Zang C. Old World megadroughts and pluvials during the Common Era // Science Advances. 2015. V. 1 (10). P. 30-46
Cook E.R., Solomina O., Matskovsky V., Cook B.l, Agafonov L., Berdnikova A., Kuznetsova V. The European Russia Drought Atlas (1400-2016 CE) // Climate Dynamics. 2020. V. 54 (3). P. 2317-2335
Dannenberg M.P., Wise E.K. Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin // Journal of Geophysical Research: Biogeosciences. 2016. V. 121. P. 1178-1189
Dolgova E. June-September temperature reconstruction in the Northern Caucasus based on blue intensity data // Dendrochronolo-gia. 2016. V. 39. P. 17-23
Duthorn E., Schneider L., Gunther B., Glaser S., Esper J. Ecological and climatological signals in tree-ring width and density chronologies along a latitudinal boreal transect // Scandinavian Journal of Forest Research. 2016. V. 31, No. 8. P. 750-757
Esper J., Frank D. Divergence pitfalls in tree-ring research // Climatic Change. 2009. V. 94 (3). P. 261-266
Esper J., Frank D.C., Timonen M., Zorita E., Wilson R.J.S., Luterbacher J. Orbital forcing of tree-ring data // Nature Climate Change. 2012. V. 2 (12). P. 862-866
Esper J., Duthorn E., Krusic P.J., Timonen M., Buntgen U. Northern European summer temperature variations over the Common Era from integrated tree-ring density records // Journal of Quaternary Science. 2014. V. 29 (5). P. 487-494
Esper J., Schneider L., Smerdon J.E., Schone B.R., Buntgen U. Signals and memory in tree-ring width and density data // Den-drochronologia. 2015. V. 35. P. 62-70
Esper J., George S.S., Anchukaitis K., D'Arrigo R., Ljungqvist F.C., Luterbacher J. Large-scale, millennial-length temperature reconstructions from tree-rings // Dendrochronologia. 2018. V. 50. P. 81-90
Frank D., Esper J. Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps // Dendrochronologia. 2005. V. 22 (2). P. 107-121
Fritts H.C. Growth-rings of trees: their correlation with climate // Science. 1966. V. 154 (3752). P. 973-979
Fuentes G., Schweingruber F.H., Bartholin T., Schaur E., Briffa K.R. Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland) // Boreas. 1988. V. 17, No. 4. P. 559-566
Fuentes M., Salo R., Bjorklund J., Seftigen K., Zhang P., Gunnarson B., Linderholm H.W. A 970-year-long summer temperature reconstruction from Rogen, west-central Sweden, based on blue intensity from tree rings // The Holocene. 2018. V. 28 (2). Р. 254-266
Grudd H.A., Briffa K.R., Karlen W., Bartholin T.S., Jones P.D., Kromer B. 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales // The Holocene. 2002. V. 12 (6). P. 657-665
Harris I., Jones P.D., Osborn T.J, Lister D.H. Updated high-resolution grids of monthly climatic observations-the CRU TS3. 10 Dataset // Int. J. of Climatology. 2014. V. 34 (3). P. 623-642
Helama S., Arentoft B.W., Collin-Haubensak O., Hyslop, M.D., Brandstrup C.K., Makela, H.M., Wilson R. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland // Ecological Research. 2013. V. 28, No. 6. P. 1019-1028
Hellman L., Agafonov L., Ljungqvist F.C., Churakova O., Duthorn E., Esper J., Buntgen U. Diverse growth trends and climate responses across Eurasia's boreal forest // Environmental Research Letters. 2016. V. 11, No. 7. P. 074021
Holmes R.L.Computer-assisted quality control in tree-ring dating and measurement // Tree-Ring Bulletin. 1983. V. 43. P. 69-78
Guiot J. The bootstrapped response functions. 1991
Kaczka R.J., Spyt B., Janecka K., Musiol R. The blue intensity proxy for>400 years growing season temperature reconstruction from the Tatra Mountains // TRACE. 2017. V. 15. P. 23-30
Kaczka R.J., Spyt B., Janecka K., Beil I., Buntgen U., Scharnweber T. Different maximum latewood density and blue intensity measurements techniques reveal similar results // Dendrochronologia. 2018. V. 49. P. 94-101
Larsson L. CooRecorder and Cdendro programs of the CooRecorder/Cdendropackage version 7.6. 2013. URL: http://www.cybis.se/forfun/dendro/
Linderholm H.W., Bjorklund J., Seftigen K., Gunnarson B.E., Fuentes M. Fennoscandia revisited: A spatially improved treering reconstruction of summer temperatures for the last 900 years // Climate Dynamics. 2015. V. 45 (3-4). P. 933-947
Ljungqvist F.C., Seim A., Krusic P.J., Gonzalez-Rouco J.F., Werner J.P., Cook E.R., Buntgen U. European warm-season temperature and hydroclimate since 850 CE // Environmental Research Letters. 2019. V. 14, No. 8. P. 084015
Ljungqvist F.C., Piermattei A., Seim A., Krusic P.J., Buntgen U., He M., Esper J. Ranking of tree-ring based hydroclimate reconstructions of the past millennium // Quaternary Science Reviews. 2020. V. 230. P. 106074
Meko D.M., Baisan C.H. Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American monsoon region // International Journal of Climatology: A Journal of the Royal Meteorological Society. 2001. V. 21, Iss. 6. P. 697-708
McCarroll D., Pettigrew E., Luckman A., Guibal F., Edouard J.L. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings //Arctic, Antarctic, and Alpine Research. 2002. V. 34, No. 4. P. 450-453
McCarroll D., Loader N.J., Jalkanen R., Gagen M.H., Grudd H., Gunnarson B.E. A 1200-year multiproxy record of tree growth and summer temperature at the northern pine forest limit of Europe // The Holocene. 2013. V. 4. P. 471-484
Mills C.M., Crone A., Wood C., Wilson R. Dendrochronologically dated pine buildings from Scotland: The SCOT2K Native Pine Dendrochronology Project // Vernacular Architecture. 2017. V. 48 (1). P. 23-43
Rydval M., Larsson L.A., McGlynn L., Gunnarson B.E., Loader N.J., Young G.H., Wilson R. Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland // Dendrochronologia. 2014. V. 32 (3). P. 191-204
Rydval M., Gunnarson B.E., Loader N.J., Cook E.R., Druckenbrod D.L., Wilson R. Spatial reconstruction of Scottish summer temperatures from tree rings // International Journal of Climatology. 2017a. V. 37 (3). P. 1540-1556
Rydval M., Loader N.J., Gunnarson B.E., Druckenbrod D.L., Linderholm H.W., Moreton S.G. Reconstructing 800 years of summer temperatures in Scotland from tree rings // Climate Dynamics. 2017b. V. 49 (9-10). P. 2951-2974
Rydval M., Druckenbrod D.L., Svoboda M., Trotsiuk V., Janda P., Mikolas M. Influence of sampling and disturbance history on climatic sensitivity of temperature-limited conifers // The Holocene. 2018. V. 28 (10). P. 1574-1587
Seftigen K., Fuentes M., Ljungqvist F.C., Bjorklund J. Using Blue Intensity from drought-sensitive Pinus sylvestris in Fen-noscandia to improve reconstruction of past hydroclimate variability // Climate Dynamics. 2020. V. 55. P. 579-594
Schweingruber F.H., Fritts H.C., Braker O.U., Drew L.G., Schar E. The X-ray technique as applied to dendroclimatology. TreeRing Bulletin. 1978
Schweingruber F.H., Briffa K.R. Nogler P. A tree-ring densitometric transect from Alaska to Labrador // International Journal of Biometeorology. 1993. V. 37 (3). P. 151-169
Schweingruber F., Fritz H. Tree rings and environment: dendroecology. Paul Haupt AG Bern, 1996
Schweingruber F.H., Shiyatov S.G., Shishov V. Long-term climatic changes in the Arctic region of the Northern Hemisphere // Doklady Earth Sciences. 2000. V. 375, No. 8. P. 1314-1317
Schweingruber F.H. Tree rings: basics and applications of dendrochronology. 2012. Springer Science & Business Media
Sheppard P.R., Graumlich L.J., Conkey L.E. Reflected-light image analysis of conifer tree-rings for reconstructing climate // The Holocene. 1996. V. 6 (1). P. 62-68
Tene A., Tobin B., Dyckmans J., Ray D., Black K., Nieuwenhuis M. Assessment of tree response to drought: Validation of a methodology to identify and test proxies for monitoring past environmental changes in trees // Tree Physiology. V. 201131 (3). P. 309-322
Trachsel M., Kamenik C., Grosjean M., McCarroll D., Moberg A., Brazdil R. Multi-archive summer temperature reconstruction for the European Alps, AD 1053-1996 // Quaternary Science Reviews. 2012. V. 46. P. 66-79
Wigley T.M., Briffa K.R., Jones P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology // Journal of Applied Meteorology and Climatology. 1984. V. 23, No. 2. P. 201-213
Wilson R.J., Esper J., Luckman B.H. Utilising historical tree-ring data for dendroclimatology: A case study from the Bavarian Forest, Germany // Dendrochronologia. 2004. V. 21 (2). P. 53-68
Wilson R., Loader N.J., Rydval M., Patton H., Frith A., Mills C.M., Gunnarson B.E. Reconstructing Holocene climate from tree rings: The potential for a long chronology from the Scottish Highlands // The Holocene. 2012. V. 22 (1). P. 3-11
Wilson R., Rao R., Rydval M., Wood C., Larsson L.A., Luckman B.H. Blue intensity for dendroclimatology: The BC blues: A case study from British Columbia, Canada // The Holocene. 2014. V. 24 (11). P. 1428-1438
Wilson R., Anchukaitis K., Briffa K.R., Buntgen U., Cook E., D'Arrigo R. Last millennium Northern Hemisphere summer temperatures from tree rings: Part I: The long-term context // Quaternary Science Reviews. 2016. V. 134. P. 1-18
Wilson R., D'Arrigo R., Andreu-Hayles L., Oelkers R., Wiles G., Anchukaitis K., Davi N. Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska // Climate of the Past. 2017a. V. 13 (8). P. 1007-1022
Wilson R., Wilson D., Rydva M., Crone A., Buntgen U., Clark S. Facilitating tree-ring dating of historic conifer timbers using Blue Intensity // Journal of Archaeological Science. 2017b. V. 78. P. 99-111
Yanosky T.M., Robinove C.J. Digital image measurement of the area and anatomical structure of tree rings // Canadian Journal of Botany. 1986. V. 64 (12). P. 2896-2902
Yanosky T.M., Robinove C.J., Clark R.G. Progress in the image analysis of tree rings. 1986
Zang C., Biondi F. Treeclim: an R package for the numerical calibration of proxy-climate relations // Ecography. 2015. V. 38, No. 4. P. 431-436
 Climatal signal in different paramers of tree-rings of pine in the Solovetsky Archipelago | Geosphere Research. 2022. № 4. DOI: 10.17223/25421379/25/10

Climatal signal in different paramers of tree-rings of pine in the Solovetsky Archipelago | Geosphere Research. 2022. № 4. DOI: 10.17223/25421379/25/10

Download full-text version
Counter downloads: 213