Mineral composition and genesis of dolomite type nephrite, Kavokta deposit, Middle Vitim mountain country: vein 1 of site Prozrachny
Kavokta deposit of dolomite type nephrite is located at the Middle Vitim mountain country. The deposit area is composed of granite of the Late Paleozoic Vitimkan complex. The granite contain xenoliths of complex shape, remnants in the sagging roofs of Lower Proterozoic rocks. They are represented by metasandstone, crystalline schist, amphibolite, and dolomite marble. The deposit has 3 sites consisting of 6 nephrite-bearing zones, including nephrite lodes. The Prozrachny site in the north-west of the deposit includes nephrite-bearing zones 1 and 2. Nephrite-bearing zone 1 of sublatitudinal strike is located on the southern flank of the site and unites veins 1, 4, 9. Vein 1 is a nephrite body with tectonic contacts of complex morphology with constrictions, bulges in the area of contact between dolomite marble and epidotized amphibolite. The calcite-tremolite and epidote-tremolite skarns are wall rocks. The vein is 15 m long, O. 2-2.8 m thick, steeply dipping to the southwest at an angle of 60-70°. It’s opened to a depth of 15 m. At depth, a complex propellershaped morphology is revealed due to changes in incidence angles from 20 to 65°. 16 nephrite samples from the drill core of this vein were studied by optical and electron microscopes. Nephrite is characterized by a variety of structures and textures. 25 minerals have been identified and classified as relic, metasomatic pre-nephrite and nephrite stages, hydrothermal and secondary. The high content of F in dolomite type nephrite is explained by the wide development of fluorapatite and fluorophlogopite. The intensity of the green color of nephrite is explained by the admixture of Fe in tremolite, and the black color is explained by its transition to actinolite in the areas of contact with epidote-tremolite skarn after amphibolite. A model of nephrite formation is presented: development of diopside after dolomite CaMg(CO3)2 + 2SiO2CaMgSi2O6 + 2CO2, replacement of diopside by tremolite 2CaMgSi2O6 + MgO + 4SiO2 + H2O + O2Ca2Mg5(Si4O11)2(OH)2 or calcite-tremolite skarn 5CaMgSi2O6 + H2O + ЗСО2 + 4O2Ca2Mg5(Si4Oii)2(OH)2 + ЗСаСОз + 6SiO2, and replacement of calcite by tremolite 2СаСОз + 5MgO + 8SiO2 + H2OCa2Mg5(Si4O11)2(OH)2 + 2CO2, replacement of prismatic tremolite by entangled fibrous one. In some cases, tremolite can develop directly over dolomite 4CaMg(CO3)2 + 8SiO2 + 6MgO + 2H2O + 7O22Ca2Mg5(Si4O11)2(OH)2 + 8CO2. Another option: the formation of tremolite through the forsterite stage: 2CaMg(CO3)2 + SiO2Mg2SiO4 + 2CaCO3 + 2CO2; 5Mg2SiO4 + 4CaCO3 + 11SiO2 + 2H2O + 2O22Ca2Mg5(Si4O11)2(OH)2 + 2CO2. Tremolite is subsequently replaced by chlorite and calcite Ca2Mg5[Si4Ou]2(OH)2 + Al2O3 + 3H2O + 2CO2Mg5Al[Si3AlO10](OH)8 + 2CaCO3 + SiO2 + 4O2. Granite provide heat for metasomatism. Participation in the nephrite formation amphibolite determines the variety of nephrite colors. The role of metamorphism is reduced to tectonic fragmentation, which facilitates the penetration of fluids, and stress, which provides a nephrite tangled-fibrous cryptocrystalline texture. The author is grateful for the materials provided by JSC "Transbaikal Mining Enterprise", personally by A.P. Suzdalnitsky, D.B. Sharakshinova and E.V. Raevskaya, analysts E.A. Khromova and E.V. Khodyreva, preparation of illustrations - to V.V. Vanteev and A.V. Trofimov. The work was carried out within the framework of the topic of the research work Project № АААА-А21-121011390003-9. The study was conducted using facilities of Analytical Center «Geospectr» of GIN SB RAS, Ulan-Ude, Russia. The author declares no conflicts of interests.
Keywords
metasomatism,
metamorphism,
tremolite,
mineral composition,
nephriteAuthors
Kislov Evgeniy V. | N.L. Dobretsov Geological Institute, SB RAS | evg-kislov@ya.ru |
Всего: 1
References
Zheng F., Liu Y., Zhang H.-Q. The petrogeochemistry and zircon U-Pb age of nephrite placer deposit in Xiuyan, Liaoning // Rock and Mineral Analysis. 2019. V. 38 (4). P. 438-448. (In Chinese). doi: 10.15898/j. cnki.l1-2131/td.201807310089.
Zhong Q., Liao Z., Qi L., Zhou Zh. Black nephrite jade from Guangxi, Southern China // Gems and Gemology. 2019. V. 55 (2). P. 198-215. doi: 10.5741/GEMS.55.2.198.
Zhang X., Shi G., Zhang X., Gao G. Formation of the nephrite deposit with five mineral assemblage zones in the Central Western Kunlun Mountains, China // Journal of Petrology. 2022. V. 63 (11). gac117. doi: 10.1093/petrology/egac117.
Zhang Y.-D., Yang R.-D., Gao J.-B., Chen J., Liu Y.-N., Zhou Z.-R. Geochemical characteristics of nephrite from Luodian County, Guizhou Province, China // Acta Minerlogica Sinica. 2015. V. 35 (1). P. 56-64. (In Chinese with English abstract). doi: 10.16461/j.
Zhang C., Yu X., Jiang T. Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis // Geoscience Frontiers. 2019. V. 10 (2). P. 425-437. doi: 10.1016/j.gsf.2018.02.009.
Yui T.-F., Kwon S.-T. Origin of a dolomite-related jade deposit at Chuncheon, Korea // Economic Geology. 2002. V. 97 (3). P. 593601. doi: 10.2113/gsecongeo.97.3.593.
Yin Z., Jiang C., Santosh M. et al. Nephrite jade from Guangxi province, China // Gems and Gemology. 2014. V. 50 (3). P. 228235. doi: 10.5741/GEMS.50.3.228.
Yu H.Y., Wang R.C., Guo J.C. et al. Color-inducing elements and mechanisms in nephrites from Golmud, Qinghai, NW China: Insights from spectroscopic and compositional analyses // Journal of Mineralogical and Petrological Sciences. 2016a. V. 111 (5). P. 313325. doi: 10.2465/jmps.151103.
Yu H.Y., Wang R.C., Guo J.C. et al. Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China // Science China Earth Sciences. 2016b. V. 59. P. 1597-1609. doi: 10.1007/s11430-015-0231-8.
Xu H., Bai F., Jiang D. Geochemical characteristics and composition changes of tremolite at various stages in the mineralization process of nephrite from Tieli, Heilongjiang, Northeastern China // Arabian Journal of Geosciences. 2021. V. 14. 204. doi: 10.1007/s12517-021-06578-6.
Nichol D. Two contrasting nephrite jade types // The Journal of Gemmology. 2000. V. 27(4). P. 193-200.
Tan T.L., Ng N.N., Lim N.C. Studies on nephrite and jadeite jades by Fourier transform infarred (FTIR) and Raman spectroscopic techniques // Cosmos. 2013. V. 9 (1). P. 47-56. doi: 10.1142/S0219607713500031.
Wang L., Lin J.H., Ye T.P. et al. Discussing the coloration mechanism of Luodian Jade from Guizhou // Open Access Library Journal. 2020. V. 7. e6364. doi: 10.4236/oalib.1106364.
Wang W., Liao Z., Zhou Z. et al. Gemmological and mineralogical characteristics of nephrite from Longxi, Sichuang Province // Journal of Gems & Gemmology. 2022. V. 24 (1). P. 20-27. (In Chinese). doi: 10.15964/j.cnki.027jgg. 2022.01.003.
Xu H., Bai F. Origin of the subduction-related Tieli nephrite deposit in Northeast China: Constraints from halogens, trace elements, and Sr isotopes in apatite group minerals // Ore Geology Reviews. 2022. V. 142. 104702. doi: 10.1016/j.oregeorev.2022.10470.
Nangeelil K., Dimpfl P., Mamtimin M. et al. Preliminary study on forgery identification of Hetian Jade with Instrumental Neutron Activation Analysis. Applied Radiation and Isotopes. 2023. V. 191. 110535. doi: 10.1016/j.apradiso.2022.110535.
Liu X., Gil G., Liu Y. Timing of formation and cause of coloration of brown nephrite from the Tiantai Deposit, South Altyn Tagh, northwestern China // Ore Geology Reviews. 2021. V. 131. 103972. doi: 10.1016/j.oregeorev.2020.103972.
Liu Y., Zhang R.-Q., Maituohuti A. et al. SHRIMP U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, northwest China: Implication for a Magnesium Skarn // Ore Geology Reviews. 2016. V. 72 (1). P. 699-727. doi: 10.1016/j.oregeorev.2015.08.023.
Liu Y., Zhang R., Zhang Zh. et al. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodi-orite: Implications for the genesis of a magnesian skarn deposit // Lithos. 2015. V. 212-215. P. 128-144. doi: 10.1016/j.lithos.2014.11.002.
Ling X.-X., Schmadicke E., Li Q.-L. et al. Age determination of nephrite by in-situ SIMS U-Pb dating syngenetic titanite: A case study of the nephrite deposit from Luanchuan, Henan, China // Lithos. 2015. V. 220-223. P. 289-299. doi: 10.1016/j.lithos.2015.02.019.
Liu Y., Deng J., Shi G.H. et al. Chemical Zone of Nephrite in Alamas, Xinjiang, China // Resource Geology. 2010. V. 60 (3). P. 249259. doi: 10.1111/j.1751-3928.2010.00135.x.
Liu Y., Deng J., Shi G. et al. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China // Journal of Asian Earth Sciences. 2011a. V. 42 (3). P. 440-451. doi: 10.1016/j.jseaes.2011.05.012.
Liu Y., Deng J., Shi G., Sun X., Yang L. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China // Ore Geology Reviews. 2011b. V. 41 (1). P. 122-132. doi: 10.1016/j.oregeorev.2011.07.004.
Liang H., Shi G., Yuan Y. et al. Polysynthetic twinning of diopsides in the Niewang and Tatliksu nephrite deposits, Xinjiang, China // Minerals. 2022. V. 12(12). 1575. doi: 10.3390/min12121575.
Li N., Bai F., Xu L., Che Y. Geochemical characteristics and ore-forming mechanism of Luodian nephrite deposit, Southwest China and comparison with other nephrite deposits in Asia // Ore Geology Reviews. 2023. V. 160. 105604. doi: 10.1016/j.oregeorev.2023.105604.
Li P., Liao Z., Zhou Zh., Wu Q. Evidences from infrared and Raman spectra: Xiaomeiling is one reasonable provenance of nephrite materials used in Liangzhu Culture // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2021. V. 261. 120012. doi: org/10.1016/j.saa.2021.120012.
Li P., Liao Z., Zhou Zh. The residual geological information in Liangzhu jades: Implications for their provenance // Proceedings of the Geologists’ Association. 2022. V. 133 (3). P. 256-268. doi: 10.1016/j.pgeola.2022.04.003.
Jing Y., Liu Y. Genesis and mineralogical studies of zircons in the Alamas, Yurungkash and Karakash Rivers nephrite deposits, Western Kunlun, Xinjiang, China // Ore Geology Reviews. 2022. V. 149. 105087. doi: 10.1016/j.oregeorev.2022.105087.
Korybska-SadJo I., Gil G., Gunia P. et al. Raman and FTIR spectra of nephrites from the Zloty Stok and Jordanow Slqski (the Sudetes and Fore-Sudetic Block, SW Poland) // Journal of Molecular Structure. 2018. V. 1166. P. 40-47. doi: 10.1016/j.mol-struc.2018.04.020.
Jiang Y., Shi G., Xu L., Li X. Mineralogy and geochemistry of nephrite jade from Yinggelike deposit, Altyn Tagh (Xinjiang, NW China) // Minerals. 2020. V. 10 (5). 418. doi: 10.3390/min10050418.
Gil G., Barnes J.D., Boschi C. Nephrite from Zloty stok (Sudetes, SW Poland): petrological, geochemical, and isotopic evidence for a dolomite-related origin // The Canadian Mineralogist. 2015. V. 53. P. 533-556. doi: 10.3749/canmin.1500018.
Gil G., Baginski B., Gunia P. et al.Comparative Fe and Sr isotope study of nephrite deposits hosted in dolomitic marbles and serpentinites from the Sudetes, SW Poland: Implications for Fe-As-Au-bearing skarn formation and post-obduction evolution of the oceanic lithosphere // Ore Geology Reviews. 2020. V. 118. 103335. doi: 10.1016/j.oregeorev.2020.103335.
Gong N., Wang C., Xu S. Color Origin of Greyish-Purple Tremolite Jade from Sanchahe in Qinghai Province, NW China // Minerals. 2023. V. 13. 1049. doi: 10.3390/min13081049.
Gao S., Bai F., Heide G. Mineralogy, geochemistry and petrogenesis of nephrite from Tieli, China // Ore Geology Reviews. 2019a. V. 107. P. 155-171. doi: 10.1016/j.oregeorev.2019.02.016.
Gao K., Shi G., Wang M. et al. The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, northwest China // Geoscience Frontiers. 2019b. V. 10 (4). P. 1597-1612. doi: 10.1016/j.gsf.2018.10.008.
Feng Y., He X., Jing Y. A new model for the formation of nephrite deposits: A case study of the Chuncheon nephrite deposit, South Korea // Ore Geology Reviews. 2022. V. 141. 104655. doi: 10.1016/j.oregeorev.2021.104655.
Chen D., Yang Y., Qiao B. et al.Integrated interpretation of pXRF data on ancient nephrite artifacts excavated from Tomb No. 1 in Yuehe Town, Henan Province, China // Heritage Science. 2022. V. 10. 1. doi: 10.1186/s40494-021-00642-w.
Bai F., Li G., Lei J., Sun J. Mineralogy, geochemistry, and petrogenesis of nephrite from Panshi, Jilin, Northeast China // Ore Geology Reviews. 2019. V. 115. 103171. doi: 10.1016/j.oregeorev.2019.103171.
Bai B., Du J., Li J., Jiang B. Mineralogy, geochemistry, and petrogenesis of green nephrite from Dahua, Guangxi, Southern China // Ore Geology Reviews. 2020. V. 118. 103362. doi: 10.1016/j.oregeorev.2020.103362.
Сутурин А.Н., Замалетдинов Р.С., Секерина Н.В. Месторождение нефритов. Иркутск : Изд-во Иркутского госуниверситета, 2015. 377 с.
Adamo I., Bocchio R. Nephrite jade from Val Malenco, Italy: Review and Update // Gems and Gemology. 2013. V. 49 (2). P. 98106. doi: 10.5741/GEMS.49.2.98.
Кислов Е.В., Худякова Л.И., Николаев А.Г. Отходы переработки аподоломитового нефрита и направление их использования // Горные науки и технологии. 2023. Т. 8 (3). С. 195-206. doi: 10.17073/2500-0632-2023-01-75.
Гомбоев Д.М., Андросов П.В., Кислов Е.В. Кавоктинское месторождение светлоокрашенного нефрита: условия залегания и особенности вещественного состава // Разведка и охрана недр. 2017. № 9. С. 44-50.
Бурцева М.В., Рипп Г.С., Посохов В.Ф., Мурзинцева А.Е. Нефриты Восточной Сибири: геохимические особенности и проблемы генезиса // Геология и геофизика. 2015. Т. 56 (3). С. 516-527. doi: 10.15372/GiG20150303.