Непараметрическое оценивание актуарной современной стоимости отсроченной ренты | Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 46. DOI: 10.17223/19988605/46/6

Непараметрическое оценивание актуарной современной стоимости отсроченной ренты

Рассматривается проблема оценивания актуарной современной стоимости отсроченной ренты. Синтезируется непараметрическая оценка отсроченной ренты. Находится главная часть асимптотической среднеквадратической ошибки оценки и ее предельное распределение. Моделирование показывает, что эмпирическая среднеквадратическая ошибка оценки ренты уменьшается с ростом объема выборки.

Nonparametric estimation of actuarial present value of deferred life annuity.pdf Let x be the age of an individual and at the moment t = 0 payments start. The idea of the r-year deferred life annuity in accordance with [1. P. 174] is this: from the moment t + r = r, an individual starts receiving money once a year, which we take as a monetary unit, and payments are made only during the lifetime of an individual. It is known that the deferred life annuity is associated with the appropriate type of insurance. Thus, the average total cost of the present continuous r-year deferred life annuity is given by the following formula (see [1. P. 184]): 1 - A a (5) =-±-i, r' 5 да where A = j e-t fx (t)dt is the net premium (the expectation of the present value of an insured unit sum for r the deferred life insurance at age x), 5 is a force of interest, f ( t) = f (x +t) is a probability density of future x S (x) lifetime of an individual T = X -x [1. P. 62], f (x) is a probability density of lifetime of an individual X, S(x) = P(X > x) is a survival function. Introduce the random variable , -5T 1 - e x z(x) = ---, Tx > r. (1) о (2) Then, by averaging z(x) (1), we get the formula of the deferred life annuity (see [2-4]): a ©=e( z)=1 f 1 -^(имл r x( ) ( ) si S(x) where E is the symbol of the mathematical expectation, да Ф(x, s, r) = eSx j e~5tdF(t), x+r F(x) = P(X < x) = 1 - S(x) is a distribution function. Note that the whole li fe annuity ax (S) [2] is the special case of the deferred life annuity (2) at r = 0. 1. Construction of the Deferred Annuity Estimator Assume that we have a random sample X1,...,XN of N individuals' lifetimes. Using the empirical survival function 1 N Sn (X) = -11(X< > x), N i=1 where I(A) is the indicator of an event A, obtain the following estimator of (2): Л Ф n (x, 5, r ) Sn( X) £ exp(-5X< )I(Xt > x + r) aN (5)=-r 5 1- (3) 1 -- Sn(x) • N~= V 05x N Фn (x, 5, r) = - £ exp(-5X,< )I(X< > x + r). i=1 2. Bias and Mean Squared Error of the Estimator r^aN(5) Here we will obtain the principal term of the asymptotic MSE and the bias convergence rate of the estimator (3). Introduce the notation according to [5]: t^ = (tlN, t2N ,---,tSN )T is an s-dimensional vector with the components tjN = tjN (x) = tjN(x; X1,...,XN), j = 1, s, x e Ra, Ra is the a-dimensional Euclidean space; H(t):Rs ^R1 is a function, where t = t(x) = (tx(x),...,ts(x))T is an s-dimensional bounded vector function; N (ц, a) is the s-dimensional normally distributed random variable with a mean vector and covariance matrix 8H (z) , j = 1, s; ^ is the symbol of convergence in distri a = o(x); VH(t) = (H1(t),...,Hs(t))T, Hj(t) = bution; || x || is the Euclidean norm of a vector x; ^ is the set of natural numbers. Definition 1. The function H(t): Rs ^ R1 and the sequence {H(tN)} are said to belong to the class N s (t; Y), provided that: 1) there exists an s-neighborhood a = {z:| z -1 s, < = 1,sj, in which the function H (z) and all its partial derivatives up to order v are continuous and bounded; 2) for any values of variables Xj,..., X^ the sequence {H(tN )j is dominated by a numerical sequence C0dY, such that dN Тда, as N ^ да, and 0 < у 0 and S(t) is continuous at a point x, then 1) for the bias of (3), the following relation holds: e( a (s) - a (s)) 2) the MSE of (3) is given by the formula О(N-1); ь( raN (s)) Ф( x,25, r ) -Ф2( x, 5, r)/ S (x) N52 S 2( x) О (N "3/2 ). u2( a(5)) = E( a (5)- a (5))2 = N, + Proof. For the estimator ^ax (5) (3) in the notation of Theorem 1, we have: s = 2; tN = (tin,t2N)t = (*,5,r),SN(x))t; dN = N; t = (tl,t2)1 = (Ф(х,5,r),S(x))T; ( t л 1 - A- V t2 J Ф N (X, 5, r) SN (x) Ф( X, 5, r) S (x) = r\axN (5); H (t) = -5 = Aax (5); H (tN) = - 1- 1 - VH (t) = ( Hi(t), H2 (t) )T = T 1 Ф(х, 5, r) ф 0. 5S (x) 5S 2 (x) The sequence {H(tN)} satisfies the condition 1) of Theorem 1 with C0 = - (1 + e r), у = 0. Indeed. N e Z exp(-5Xt )I(Xt > X + r) 1 + -- N ZI (Xt > X) i=1 Ф N ( X, 5, r ) Ф N (X, 5, r) Sn (X) 1 |H (tN )| = 1 - < < - < SN (X) X + r) i=1 1 X) i=1 V. Further, the function H(t) satisfies the condition 1) in view of t2 = S(x) > 0. Also, this function satisfies the condition 2) due to Lemma 3.1 [6], as for all t е^ such inequalities hold: E{I(X >x)} = S(x) < 1, E{et&ce~tSX It (X > x+r)} < et5*e-S(x + r) = S (x + r) < 1 It is well known that SN (x) is the unbiased and consistent estimator of S(x). Show that ФN (x, 5, r) is the unbiased estimator of Ф^, 5, r) and calculate the variance of ФN (x, 5, r): e5x (N 1 ЕФN (X, 5, r) = - EIZ exp(-5X, )I(X, > x + r) \ = Ф(x, 5,r), (x,5,r) = e- ZD{l(Xt > x + r)e~5X' } = 1 (ф(x,2 5,r)-Ф2(x,5,r)). БФ N Considering that E(tN -1) = 0 and all the conditions of Theorem 1 are fulfilled, in accordance with (4) we get the order of the bias of ,aXN (5): E(HaN(S) - a(b)) -E[VH(t)(tN -1)] ■■O ( N-1). E( AaN(S) - (S)) Find the components of the covariance matrix o( ,ax (5)) = for the statistics ФN (x, 5, r) and Sn (x): = ND {Ф N (x, 5, r)} = Ф( x, 2 5, r) - Ф 2 (x, 5, r); о 22 = ND {Sn (x)} = S (X )(1 - S (x)); °12 = 021 = J11 = N cov(Sn (X), Ф N (X, 5, r)) = N (E {Sn (^Ф n (x, 5, r)} - E {Sn (x)} E {Ф n (x, 5, r)}) = (1 - S (x)^( x, 5, r). Using the previous results on the bias and covariance matrix, we obtain u2(a(5)) = E[VH(t)(tN -1)]2 + O(N-3/2) = H12(t)on + H2(t)022 + 2H1(t)H2(t)o12 + O(n-/2) = Ф( x,2 5, r) -Ф2 (x,5, r)/ S (x) (5) ■ + N52 S2 (x) O ( N-3/2). The proof of Theorem 2 is completed. 3. Asymptotic Normality of the Estimator We need the following two Theorems. Theorem 3 [7, Appendix 5]. If ^£2,...£N,... is a sequence of independent and identically distributed T 1 N I- s-dimensional vectors, E{

Ключевые слова

асимптотическая нормальность, среднеквадратическая ошибка, отсроченная пожизненная рента, непараметрическое оценивание, asymptotic normality, mean squared error, deferred life annuity, nonparametric estimation

Авторы

ФИООрганизацияДополнительноE-mail
Губина Оксана Викторовна Томский государственный университет аспирант Института прикладной математики и компьютерных наукgov7@mail.ru
Кошкин Геннадий Михайлович Томский государственный университет профессор, доктор физико-математических наук, профессор кафедры теоретической кибернетики Института прикладной математики и компьютерных наукkgm@mail.tsu.ru
Всего: 2

Ссылки

Zhang, B. (1995) M-estimation and quantile estimation in the presence of auxiliary information. Journal of Statistical Planning and Inference. 44. pp. 77-94. DOI: 10.1016/0378-3758(94)00040-3
Tarima, S. & Pavlov, D. (2006) Using auxiliary information in statistical function estimation. ESAIM: Probability and Statistics. 10. pp. 11-23. DOI: 10.1051/ps:2005019
Owen, A.B. (1991) Empirical likelihood for linear models. Ann. Statist. 19. pp. 1725-1747.
Qin, J. & Lawless, J. (1994) Empirical likelihood and general estimating equations. Ann. Statist. 22. pp. 300-325. DOI: 10.1214/aos/1176325370
Levit, B.Ya. (1975) Conditional estimation of linear functionals. Problems of Information Transmission. 19(4). pp. 291-302.
Dmitriev, Yu.G., Tarassenko, P.F. & Ustinov, Y.K. (2014) On estimation of linear functional by utilizing a prior guess. In: Dudin, A. et al. (eds.) Communications in Computer and Information Science. ITMM2014. Vol. 487. pp. 82-90.
Dmitriev, Yu.G. & Tarasenko, P.F. (2014) The use of a priori information in the statistical processing of experimental data. Russian Physics Journal. 35(9). pp. 888-893.
Dmitriev, Yu.G. & Koshkin, G.M. (1987) Using additional information in nonparametric estimation of density functionals. Automation and Remote Control. 48(10). pp. 1307-1316.
Dmitriev, Yu.G. & Koshkin, G.M. (1987) On the use of a priori information in nonparametric regression estimation. IFAC Proceedings Series. 2. pp. 223-228. DOI: 10.1016/S1474-6670(17)59798-0
Fuks, I. & Koshkin, G. (2015) Smooth recurrent estimation of multivariate reliability function. Proceedings of the International Conference on Information and Digital Technologies 2015. IDT 2015. Zilina, Slovakia. July 7-9, 2015. pp. 84-89.
Koshkin, G.M. (2015) Smooth recurrent estimators of the reliability functions. Russian Physics Journal. 58(7). pp. 1018-1025. DOI: 10.1007/s11182-015-0603-9
Koshkin, G.M. (2014) Smooth estimators of the reliability functions for non-restorable elements. Russian Physics Journal. 57(5). pp. 672-681. DOI: 10.1007/s11182-014-0290-y
Una-Alvarez, J., Gonzalez-Manteiga, W. & Cadarso-Suarez, C. (2000) Kernel distribution function estimation under the Koziol-Green model. J. Statist. Plann. Inference. 87. pp. 199-219.
Shao, Y. & Xiang, X. (1997) Some extensions of the asymptotics of a kernel estimator of a distribution function. Statist. Probab. Lett. 34. pp. 301-308. DOI: 10.1016/S0167-7152(96)00194-0
Chu, I.S. (1995) Bootstrap smoothing parameter selection for distribution function estimation. Math. Japon. 41(1). pp 189-197.
Bowman, A., Hall, P. & Prvan, T. (1998) Trust bandwidth selection for the smoothing of distribution functions. Biometrika. 85(4). pp. 799-808. DOI: 10.1093/biomet/85.4.799
Altman, N. & Leger, C. (1995) Bandwidth selection for kernel distribution function estimation. J. Statist. Plann. Inference. 46. pp. 195-214. DOI: 10.1016/0378-3758(94)00102-2
Sarda, P. (1993) Smoothing parameter selection for smooth distribution functions. J. Statist. Plann. Inference Inf. 35. pp. 65-75. DOI: 10.1016/0378-3758(93)90068-H
Shirahata, S. & Chu, I.S. (1992) Integrated squared error of kernel-type estimator of distribution function. Ann. Inst. Statist. Math. 44(3). pp. 579-591. DOI: 10.1007/BF00050707
Jones, M.C. (1990) The performance of kernel density functions in kernel distribution function estimation. Statist. Probab. Lett. 9. pp. 129-132. DOI: 10.1016/0167-7152(92)90006-Q
Swanepoel, J.W.H. (1988) Mean integrated squared error properties and optimal kernels when estimating a distribution function. Comm. Statist. Theory Methods. 17(11). pp. 3785-3799. DOI: 10.1080/03610928808829835
Falk, M. (1983) Relative efficiency and deficiency of kernel type estimators of smooth distribution functions. Statist. Neerlandica. 37. pp. 73-83. DOI: 10.1111/j.1467-9574.1983.tb00802.x
Reiss, R.-D. (1981) Nonparametric estimation of smooth distribution functions. Scandinavian Journal of Statistics. 8. pp. 116-119.
Nadaraya, E.A. (1964) Some new estimates of distribution function. Theory of Probability and its Applications. 9(3). pp. 497-500. DOI: 10.1137/1109069
Azzalini, A. (1981) A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika. 68(1). pp. 326328. DOi: 10.1093/biomet/68.1.326
Ibragimov, I.A. & Khasminskii, R.Z. (1981) Statistical Estimation: Asymptotic Theory. Berlin; New York: Springer.
Borovkov, A.A. (1998) Mathematical Statistics. New York: Gordon & Breach.
Koshkin, G.M. (1990) Asymptotic properties of functions of statistics and their application to nonparametric estimation. Automation and Remote Control. 51(3). pp. 345-357.
Bowers, N., Gerber, H., Hickman, J., Jones, D. & Nesbitt, C. (1986) Actuarial Mathematics. Itasca: Society of Actuaries.
Gerber, H. (1997) Life Insurance Mathematics. 3rd ed. New York: Springer-Verlag.
Koshkin, G.M. (1999) Deviation moments of the substitution estimator and its piecewise smooth approximations. Sibirskiy Matematicheskiy Zhurnal - Siberian Mathematical Journal. 40(3). pp. 515-527.
Falin, G.I. (2002) Mathematical foundations of the theory of life insurance and pension schemes. Moscow: Ankil.
Koshkin, G.M. & Gubina, O.V. (2016) Estimation of the present values of life annuities for the different actuarial models. SMRLO 2016. Proc. The Second International Symposium on Stochastic Models, in Reliability Engineering, Life Science, and Operations Management. Beer Sheva, Israel. February 15-18, 2016. Conference Publishing Services The Institute of Electrical and Electronics Engineers. pp. 506-510.
 Непараметрическое оценивание актуарной современной стоимости отсроченной ренты | Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 46. DOI:  10.17223/19988605/46/6

Непараметрическое оценивание актуарной современной стоимости отсроченной ренты | Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2019. № 46. DOI: 10.17223/19988605/46/6