Quantum circuit optimization via local qubit reordering by quantum annealing
Отображение квантовых цепей на архитектуру с топологией ближайшего соседа требует введения дополнительных вентилей. В статье предложен гибридный подход к оптимизации квантовых цепей для двумерной архитектуры ближайшего соседа на основе построения разрезов графа и решения SAT-задачи на системе квантового отжига. Применимость метода и качество решения исследованы с помощью натурных экспериментов. Автор заявляет об отсутствии конфликта интересов.
Ключевые слова
оптимизация квантовой цепи,
разрез графа,
квантовый отжиг,
выполнимость булевых формулАвторы
Мальцева Мария Алексеевна | Университет Тренто; Институт прикладных математических исследований Карельского научного центра Российской академии наук | аспирант факультета информационной инженерии и информатики; младший научный сотрудник | mariia.maltseva@unitn.it |
Всего: 1
Ссылки
Davis, M.G., Smith, E., Tudor, A., Sen, K., Siddiqi, I. & lancu, C. (2020) Towards Optimal Topology Aware Quantum Circuit Synthesis. 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). pp. 223-234.
Arabzadeh, M., Saheb Zamani, M., Sedighi, M. & Saeedi, M. (2013) Depth-optimized reversible circuit synthesis. Quantum Information Processing. 12(4). pp. 1677-1699.
Amy, M., Maslov, D., Mosca, M. & Roetteler, M. (2013) A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 32(6). pp. 818-830.
Wille, R., Lye, A. & Drechsler, R. (2014) Optimal SWAP gate insertion for nearest neighbor quantum circuits. 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC). pp. 489-494.
Datta, K., Kole, A., Sengupta, I. & Drechsler, R. (2022) Nearest Neighbor Mapping of Quantum Circuits to Two-Dimensional Hexagonal Qubit Architecture. 2022 IEEE 52nd International Symposium on Multiple-Valued Logic (ISMVL).
Chakrabarti, A., Sur-Kolay, S. & Chaudhury, A. (2011) Linear Nearest Neighbor Synthesis of Reversible Circuits by Graph Parti tioning. arXiv.
Alfailakawi, M.G., Ahmad, I. & Hamdan, S. (2016) Harmony-Search Algorithm for 2D Nearest Neighbor Quantum Circuits Realization. Expert Systems With Applications. 61(C). pp. 16-27.
Bhattacharjee, A., Bandyopadhyay, C., Wille, R., Drechsler, R. & Rahaman, H. (2019) Improved Look-Ahead Approaches for Nearest Neighbor Synthesis of 1D Quantum Circuits. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). pp. 203-208.
Wakaki, H. & Yamashita, S. (2019) Mapping a Quantum Circuit to 2D Nearest Neighbor Architecture by Changing the Gate Order. IEICE Transactions on Information and Systems. E102.D. pp. 2127-2134.
Shafaei, A., Saeedi, M. & Pedram, M. (2014) Qubit placement to minimize communication overhead in 2D quantum architectures. Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC). pp. 495-500.
Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A. & Drechsler, R. (2016) Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits. 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC). pp. 292-297.
Farghadan, A. & Mohammadzadeh, N. (2017) Quantum circuit physical design flow for 2D nearest-neighbor architectures: Quantum Circuit Design Flow.International Journal of Circuit Theory and Applications. 45. pp. 989-1000.
Nielsen, M.A. & Chuang, I.L. (2010) Quantum computation and quantum information. Cambridge University Press. [Online] Available from: https://profmcruz.wordpress.com/wp-content/uploads/2017/08/quantum-computation-and-quantum-information-nielsen-chuang.pdf. (Accessed: 27th September 2024).
Pereira da Silva, R. (2023) Gate-based Quantum Computing: An Overview. SSRN Electronic Journal.
Racorean, O. (2015) Quantum Gates and Quantum Circuits of Stock Portfolio. arxiv.
Yarkoni, S., Raponi, E., Back, T. & Schmitt, S. (2022) Quantum annealing for industry applications: introduction and review. Reports on Progress in Physics. 85(10). pp. 1-43.
Su, J. (2018). Towards Quantum Computing: Solving Satisfiability Problem by Quantum Annealing. UCLA Electronic Theses and Dissertations. [Online] Available from: https://escholarship.org/uc/item/8qp5200s. (Accessed: 26th August 2024).
Bonomi, A., De Min, T., Zardini, E., Blanzieri, E., Cavecchia, V. & Pastorello, D. (2022) Quantum annealing learning search implementations. Quantum Information and Computation. 22(3 & 4). pp. 181-208.
Bian, Z., Chudak, F., Macready, W., Roy, A., Sebastiani, R. & Varotti, S. (2018) Solving SAT and MaxSAT with a Quantum Annealer: Foundations, Encodings, and Preliminary Results. arXiv. [Online] Available from: https://arxiv.org/abs/1811.02524. (Accessed: 26th August 2024).
Foead, D., Ghifari, A., Kusuma, M.B., Hanafiah, N. & Gunawan, E. (2021) A Systematic Literature Review of A* Pathfinding. Procedia Computer Science. 179. pp. 507-514.