Dynamic locally-optimal control systems for objects with interval parameters with state delay | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 4(29).

Dynamic locally-optimal control systems for objects with interval parameters with state delay

Consider the problem of dynamical locally-optimal control based on the observed output for discrete objects with interval parameters and delay in the state, described by the following difference equation: x(k +1) = (A + £ A 19 t)x(k) + (A + £ A 19 1)x(k - h) + (B + £ B 19 1)u(k) + q(k); i=1 i=1 i=1 x(x) = Ф(т),x = -h,1 -h,2 -h,...,0; k = 0,1,2,..., where x(k)eR is a state vector, h > 0 is a positive integer time delay, u(k) eR is a control input, A, Aj, A, Aj, B, Bj, i = 1, r are constant matrices of appropriate dimensions, q(k) is the Gaussian random sequence of input disturbances, 9; is uncertain parameters of interval type (-1 < 9 i < 1) . The measurement channel is represented by equation y(k) = Sx(k) + v(k), where S is the matrix of measurement channel, v(k) is the Gaussian random sequence of measurement errors. To solve the problem, we propose an algorithm, which is based on the optimization of the local criteria I (k) = M j(w(k +1) - z(k )) C (w(k +1) - z(k)) + u (k) Du(k)}, where w(k) = Hx(k) is the controlled output of the system, C = C > 0 и D = D > 0 are weighting matrices, z(k) e R is the tracking vector, described by equation z(k +1) = Fz(k) + q z (k), where q z (k) is the Gaussian random sequence, F is a matrix. The control law of object is determined by the function of measured variables with time memory of the tracked signal and the dynamic element w(k) : u(k) = K 0 (k)w(k) + K 1 (k)y(k) + K 2 (k)y(k - h) + K 3 (k)z(k). * * * * The formulas for calculating the optimal transfer coefficients K0 (k), K1 (k), K2 (k), K3 (k) are given. In this paper, the proposed synthesis algorithms of output control do not use an extension method of the state space. The asymptotic properties of the closed-loop system are obtained. For the square criterion J = kim M{|| x(k) - z\\ }, which defines the asymptotic accuracy of tracking, it is shown that J < [(G + R) + (g + r2) + trQ][( ai + Ф ) + (a2 + Ф2)] + 1 - (a2 +Ф ) +2(*а, + 1 - (а2 +Ф ) +2(g + Г 2) 1 + 2 g + 1 + Ф + 2 ^ + ) + (g + r i)2 + (G + r)2 + t . 1 -а 1 So, we see that under natural restrictions on the class of dynamic systems, the method of locally optimal tracking on indirect measurements with errors provides asymptotic tracking with accuracy determined by the intensity of additive disturbances and errors in the observations, dynamic characteristics of a closed-loop system, values of the parameters of the object, and the transmission coefficients of the tracking control system. The comparison of the simulation results of the two control systems is given with: - the optimal transfer coefficients, calculated with using the interval parameters; - the transfer coefficients, calculated with using the nominal values of the parameters. The criterion of estimation of the quality of convergence of the state vector x(k) to the desired value z(k) shows that the average error of the deviation of the state vector x(k) of the tracking vector z(k) in the robust control is less than the control constructed on the nominal values of the parameters.

Download file
Counter downloads: 427

Keywords

локально-оптимальное слежение, запаздывание по состоянию, интервальные параметры, динамические системы управления, управление по выходу, local-optimal control, state delay, dynamic control system, output control

Authors

NameOrganizationE-mail
Mukhina Oksana O.Tomsk State Universityoksm7@sibmail.com
Smagin Valery I.Tomsk State Universityvsm@mail.tsu.ru
Всего: 2

References

Camacho E.F., Bordons C. Model Predictive Control. London : Springer-Verlag, 2004. 405 p.
Aggelogiannaki E., Doganis Ph., Sarimveis H. An Adaptive Model Predictive Control Configuration for Production-Inventory Sys tems // International Journal of Production Economics. 2008. V. 114. P. 165-178.
Wang W., Rivera D. A Novel Model Predictive Control Algorithm for Supply Chain Management in Semiconductor Manufacturing // 2005 American Control Conference, Portland, OR, 2005. P. 841-855.
Stoica C., ArahalM. Application of Robustified Model Predictive Control to a Production-Inventory System // 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference Shanghai, P.R. China, 2009. P. 3993-3998.
Henneta J.-C. A Globally Optimal Local Inventory Control Policy for Multistage Supply Chains // International Journal of Production Research. 2009. V. 47, is. 2. P. 435-453.
Dombrovskii V.V., Dombrovskii D.V. Predictive Control of Random-Parameter Systems with Multiplicative Noise. Application to Investment Portfolio Optimization // Automation and Remote Control. 2005. V. 66, is. 4. P. 583-595.
Dai L., Xia Y., Fu M., Mahmoud M. Discrete-Time Model Predictive Control. Advances in Discrete Time Systems. InTech, 2012. Chapter 4. P. 77-116.
Tang G., Sun H., Liu Y. Optimal Tracking Control for Discrete Time-Delay Systems with Persistent Disturbances // Asian Journal of Control. 2006. V. 8, No. 8. P. 135-140.
Мухина О.О., Смагин В.И. Локально-оптимальное управление по выходу для дискретных объектов с запаздыванием по со стоянию // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2014. № 1 (26). С. 4-13.
Patre B.M., Bandyopadhyay B. Robust Control for Two-Time-Scale Discrete Interval Systems // Reliable computing. 2006. No. 12. P. 45-58.
Lin T-S., Chan S-W. Robust Adaptive Fuzzy Sliding Mode Control for a Class of Uncertain Discrete-Time Nonlinear Systems // International Journal of Innovative Computing, Information and Control. 2012. V. 8, No. 1(A). P. 347-359.
Смагин В.И., Смагин С.В. Адаптивное управление запасами с учетом ограничений и транспортных запаздываний // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2008. № 3(4). С. 19-26.
Киселева М.Ю., Смагин В.И. Управление производством, хранением и поставками товаров на основе прогнозирующей модели выхода системы // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2009. № 2(7). С. 24-31.
Киселева М.Ю., Смагин В.И. Управление с прогнозирующей моделью с учетом запаздывания по управлению // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 2(11). С. 5-12.
Luenberger D.G. An introduction to observers // IEEE. Trans. Automatic Contr. 1972. V. AC-16, No. 6. P. 596-602.
Домбровский В.В. Синтез динамических регуляторов пониженного порядка при Hм ограничениях // Автоматика и телемеханика. 1996. № 11. С. 10-17.
Домбровский В.В. Понижение порядка систем оценивания и управления. Томск : Изд-во Том. ун-та, 1994. 175 с.
Луценко И.В., Садомцев Ю.В. Синтез дискретных Н2-оптимальных регуляторов пониженного порядка // Автоматика и телемеханика. 2009. № 10. C. 114-132.
Андреев Ю.Н. Управление конечномерными линейными объектами М. : Наука, 1976. 424 с.
Абгарян К.А. Матричные и асимптотические методы в теории линейных систем. М. : Наука, 1973. 432 с.
Wonham W.M. Linear Multivariable Control: A Geometric Approach. Springer-Verlag, 1979. 354 p.
 Dynamic locally-optimal control systems for objects with interval parameters with state delay | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. №  4(29).

Dynamic locally-optimal control systems for objects with interval parameters with state delay | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 4(29).

Download full-text version
Counter downloads: 1049