Calculation of moments in retrial queueing system MMPP|M|1 | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 4(29).

Calculation of moments in retrial queueing system MMPP|M|1

In the paper, we investigate a retrial queueing system with the input Markovian Modulated Poisson Process (MMPP) which is defined by matrixes pX and Q, and the service time of each call is distributed by the exponential law with rate We introduce the following denotations: i(t) is the process defining the call number in the orbit, n(t) is the underlying Markov chain of the input ММР-process, and k(t) describes states of the server. Stochastic multidimensional process {k(t), i(t), n(t)} is a Markov process. To obtain the probability distribution P(k,i,n,t), the system of the Kolmogorov differentiate equations is composed. This system is written in matrix form at stationary regime. Then, it is rewritten with making use of characteristic functions and the obtained system is studied by the method of moments. Using mathematical transforms, the following systems for components of the mean and the second order initial moment of probability distribution of calls number in the orbit are obtained: jam 0 = R Q(Q -рЛ) + [am q E = ц - R q (|aE + pЛE), mjQ = am 0 - m 0Q - R 1pЛ, mj(pE -pAE) = 2 R^E + -j m 0(2рЛБ + aE), ad о = m q(Q -рЛ) + цш 1; ad 0E = ц-mjE - pm 0 ЛE, djQ = -d 0Q + 2ad 0 - 2m 1pЛ - RjpX -am 0, d 1(pЛE + |aE) = d Q(pЛE + aE) - m 1pЛE - 3 R 1pЛE - 3 am 0 E. However, the form of vectors {R 0, R 1}, which is two-dimensional joint stationary probability distribution of the MMP-process and the server states, is unknown. So, we assume the independence of the MMP-process and the server states distributions, and the vectors {R0, R1} have the following form: [R 0 = (1 -p) • R, IR =p-R. The analysis of the results shows that moments calculated through obtained formulas are sufficiently close to exact ones obtained by numerical methods. Thus, the moments calculated by proposed way can be called «quasiexact». The formulas for moments calculation can be used in future researching by composing approximate distributions and also for other practical problems.

Download file
Counter downloads: 371

Keywords

слова: RQ-система, источник повторных вызовов, метод моментов, retrial queueing system, orbit, method of moments

Authors

NameOrganizationE-mail
Fedorova Ekaterina А.Tomsk State Universitymoiskate@mail.ru
Всего: 1

References

Falin G.L., Templeton J.G.C. Retrial queues. London : Chapman & Hall, 1997. 328 р.
Artolejo J.R., Gomez-Corral A. Retrial Queueing Systems: A Computational Approach. Berlin : Springer, 2008. 267 p.
Artalejo J.R., Falin G.I. Standard and retrial queueing systems: A comparative analysis // Revista Matemratica Complutense. 2002. V. 15. P. 101-129.
Wilkinson R.I. Theories for toll traffic engineering in the USA // The Bell System Technical Journal. 1956. V. 35, No. 2. P. 421-507.
Cohen J.W. Basic problems of telephone traffic and the influence of repeated calls // Philips Telecommunication Review. 1957. V. 18, No. 2. P. 49-100.
Gosztony G. Repeated call attempts and their effect on traffic engineering // Budavox Telecommunication Review. 1976. No. 2. P. 16-26.
Elldin A., Lind G. Elementary Telephone Traffic Theory. Ericsson Public Telecommunications, 1971.
Jonin G.L., Sedol J.J. Telephone systems with repeated calls // Proc. of the 6th International Teletraffic Congress. Munich, 1970. P. 435/1-5.
Степанов С.Н. Численные методы расчета систем с повторными вызовами. М. : Наука, 1983. 230 с.
NeutsM.F., Rao B.M. Numerical investigation of a multiserver retrial model // Queueing Systems. 1990. V. 7. P. 169-190.
Ridder F. Fast simulation of retrial queues // Third Workshop on Rare Event Simulation and Related Combinatorial Optimization Problems. Pisa, 2000. P. 1-5.
Dudin A.N., Klimenok V.I. Queueing System BMAP/G/1 with repeated calls // Mathematical and Computer Modelling. 1999. V. 30, No. 3-4. P. 115-128.
Artalejo J.R., Gomez-Corral A., Neuts M.F. Analysis of multiserver queues with constant retrial rate // European Journal of Operational Research. 2001. V. 135. P. 569-581.
Diamond J.E., Alfa A.S. Matrix analytical methods for M/PH/1 retrial queues // Stochastic Models. 1995. V. 11. P. 447-470.
Назаров A.A., Моисеева CM. Метод асимптотического анализа в теории массового обслуживания. Томск : Изд-во HTJI, 2006. 112 с.
Моисеева Е.А., Назаров А.А. Исследование RQ-системы MMPP|GI|1 методом асимптотического анализа // Вестник ТГУ. УВТИ. 2013. № 4. С. 84-94.
Фалин Г.И. Асимптотические свойства распределения числа требований в системе типа m/g/1/да с повторными вызовами // ВИНИТИ. 1983. № 5418-83.
Anisimov V.V. Asymptotic analysis of highly reliable retrial systems with finite capacity // Queues, Flows, Systems, Networks. Proc. of the International Conference «Modern Mathematical Methods of Investigating the Telecommunicational Networks». Minsk, 1999. P. 7-12.
 Calculation of moments in retrial queueing system MMPP|M|1 | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. №  4(29).

Calculation of moments in retrial queueing system MMPP|M|1 | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2014. № 4(29).

Download full-text version
Counter downloads: 1050