Nonparametric estimation of actuarial present value of deferred life annuity
The paper deals with the estimation problem of the actuarial present value of the deferred life annuity. The nonpara-metric estimator of the deferred life annuity was constructed. We found the principal term of the asymptotic mean squared error (MSE) of the proposed estimator and proved its asymptotic normality. The simulations show that the empirical MSE of the annuity estimator decreases when the sample size increases.
Keywords
асимптотическая нормальность,
среднеквадратическая ошибка,
отсроченная пожизненная рента,
непараметрическое оценивание,
asymptotic normality,
mean squared error,
deferred life annuity,
nonparametric estimationAuthors
Gubina Oxana V. | Tomsk State University | gov7@mail.ru |
Koshkin Gennady M. | Tomsk State University | kgm@mail.tsu.ru |
Всего: 2
References
Zhang, B. (1995) M-estimation and quantile estimation in the presence of auxiliary information. Journal of Statistical Planning and Inference. 44. pp. 77-94. DOI: 10.1016/0378-3758(94)00040-3
Tarima, S. & Pavlov, D. (2006) Using auxiliary information in statistical function estimation. ESAIM: Probability and Statistics. 10. pp. 11-23. DOI: 10.1051/ps:2005019
Owen, A.B. (1991) Empirical likelihood for linear models. Ann. Statist. 19. pp. 1725-1747.
Qin, J. & Lawless, J. (1994) Empirical likelihood and general estimating equations. Ann. Statist. 22. pp. 300-325. DOI: 10.1214/aos/1176325370
Levit, B.Ya. (1975) Conditional estimation of linear functionals. Problems of Information Transmission. 19(4). pp. 291-302.
Dmitriev, Yu.G., Tarassenko, P.F. & Ustinov, Y.K. (2014) On estimation of linear functional by utilizing a prior guess. In: Dudin, A. et al. (eds.) Communications in Computer and Information Science. ITMM2014. Vol. 487. pp. 82-90.
Dmitriev, Yu.G. & Tarasenko, P.F. (2014) The use of a priori information in the statistical processing of experimental data. Russian Physics Journal. 35(9). pp. 888-893.
Dmitriev, Yu.G. & Koshkin, G.M. (1987) Using additional information in nonparametric estimation of density functionals. Automation and Remote Control. 48(10). pp. 1307-1316.
Dmitriev, Yu.G. & Koshkin, G.M. (1987) On the use of a priori information in nonparametric regression estimation. IFAC Proceedings Series. 2. pp. 223-228. DOI: 10.1016/S1474-6670(17)59798-0
Fuks, I. & Koshkin, G. (2015) Smooth recurrent estimation of multivariate reliability function. Proceedings of the International Conference on Information and Digital Technologies 2015. IDT 2015. Zilina, Slovakia. July 7-9, 2015. pp. 84-89.
Koshkin, G.M. (2015) Smooth recurrent estimators of the reliability functions. Russian Physics Journal. 58(7). pp. 1018-1025. DOI: 10.1007/s11182-015-0603-9
Koshkin, G.M. (2014) Smooth estimators of the reliability functions for non-restorable elements. Russian Physics Journal. 57(5). pp. 672-681. DOI: 10.1007/s11182-014-0290-y
Una-Alvarez, J., Gonzalez-Manteiga, W. & Cadarso-Suarez, C. (2000) Kernel distribution function estimation under the Koziol-Green model. J. Statist. Plann. Inference. 87. pp. 199-219.
Shao, Y. & Xiang, X. (1997) Some extensions of the asymptotics of a kernel estimator of a distribution function. Statist. Probab. Lett. 34. pp. 301-308. DOI: 10.1016/S0167-7152(96)00194-0
Chu, I.S. (1995) Bootstrap smoothing parameter selection for distribution function estimation. Math. Japon. 41(1). pp 189-197.
Bowman, A., Hall, P. & Prvan, T. (1998) Trust bandwidth selection for the smoothing of distribution functions. Biometrika. 85(4). pp. 799-808. DOI: 10.1093/biomet/85.4.799
Altman, N. & Leger, C. (1995) Bandwidth selection for kernel distribution function estimation. J. Statist. Plann. Inference. 46. pp. 195-214. DOI: 10.1016/0378-3758(94)00102-2
Sarda, P. (1993) Smoothing parameter selection for smooth distribution functions. J. Statist. Plann. Inference Inf. 35. pp. 65-75. DOI: 10.1016/0378-3758(93)90068-H
Shirahata, S. & Chu, I.S. (1992) Integrated squared error of kernel-type estimator of distribution function. Ann. Inst. Statist. Math. 44(3). pp. 579-591. DOI: 10.1007/BF00050707
Jones, M.C. (1990) The performance of kernel density functions in kernel distribution function estimation. Statist. Probab. Lett. 9. pp. 129-132. DOI: 10.1016/0167-7152(92)90006-Q
Swanepoel, J.W.H. (1988) Mean integrated squared error properties and optimal kernels when estimating a distribution function. Comm. Statist. Theory Methods. 17(11). pp. 3785-3799. DOI: 10.1080/03610928808829835
Falk, M. (1983) Relative efficiency and deficiency of kernel type estimators of smooth distribution functions. Statist. Neerlandica. 37. pp. 73-83. DOI: 10.1111/j.1467-9574.1983.tb00802.x
Reiss, R.-D. (1981) Nonparametric estimation of smooth distribution functions. Scandinavian Journal of Statistics. 8. pp. 116-119.
Nadaraya, E.A. (1964) Some new estimates of distribution function. Theory of Probability and its Applications. 9(3). pp. 497-500. DOI: 10.1137/1109069
Azzalini, A. (1981) A note on the estimation of a distribution function and quantiles by a kernel method. Biometrika. 68(1). pp. 326328. DOi: 10.1093/biomet/68.1.326
Ibragimov, I.A. & Khasminskii, R.Z. (1981) Statistical Estimation: Asymptotic Theory. Berlin; New York: Springer.
Borovkov, A.A. (1998) Mathematical Statistics. New York: Gordon & Breach.
Koshkin, G.M. (1990) Asymptotic properties of functions of statistics and their application to nonparametric estimation. Automation and Remote Control. 51(3). pp. 345-357.
Bowers, N., Gerber, H., Hickman, J., Jones, D. & Nesbitt, C. (1986) Actuarial Mathematics. Itasca: Society of Actuaries.
Gerber, H. (1997) Life Insurance Mathematics. 3rd ed. New York: Springer-Verlag.
Koshkin, G.M. (1999) Deviation moments of the substitution estimator and its piecewise smooth approximations. Sibirskiy Matematicheskiy Zhurnal - Siberian Mathematical Journal. 40(3). pp. 515-527.
Falin, G.I. (2002) Mathematical foundations of the theory of life insurance and pension schemes. Moscow: Ankil.
Koshkin, G.M. & Gubina, O.V. (2016) Estimation of the present values of life annuities for the different actuarial models. SMRLO 2016. Proc. The Second International Symposium on Stochastic Models, in Reliability Engineering, Life Science, and Operations Management. Beer Sheva, Israel. February 15-18, 2016. Conference Publishing Services The Institute of Electrical and Electronics Engineers. pp. 506-510.