Optimal state estimation of semi-synchronous events flow of the second order under conditions of unextendable dead time
We solve the optimal estimation problem for the states of a semi-synchronous events flow of the second order. We consider the stationary operation mode of the flow in conditions of an unextendable dead time, i.e. after each registered event at the moment tk , there is a dead time period of fixed duration T, during which other events of the considered flow are inaccessible to observation. At the end of the dead time period, the first event that occurred again creates a period of dead time, etc. The accompanying random process of the flow is a piecewise constant process X(t) with two states: if X(t) = Xj , then there is the first process state, if X(t) = X2 , then there is the second one. The process is unobservable in principle, and we can only observe moments tt , t2, ..., when events occur in the flow. We have to estimate the state of the process X(t) (flow) at moment t when the observations have stopped by observations t1, t2, ... of the events flow over the time interval (t0,t), where 10 denotes the beginning of observations. The optimal estimation of states is performed using the maximum method of a posteriori probability. To make the decision regarding the state of the process X(t) at the moment t, we have to determine posterior probabilities w(X 111) = w(X, | t1,...,tm,t) = P(X(t) = Xj 111,...,tm,t), i = 1, 2 , that at the moment t the value of the process X(t) = Xi (m is the number of events per time t), wherein w(Xj 11) + w(X211) = 1. The optimal estimation is as follows: if w(X 11) > w(X 11) , i, J = 1, 2 , i ф J , then the estimate of the process state is X(t) = X;, otherwise X(t) = Xj , i, J = 1, 2 . In the paper we find an explicit form for posterior probabilities on the intervals of the flow observability and unobservability. Based on these formulas, the algorithms have been obtained for calculating the posterior probability w(X111) ( w(X211) = 1 - w(X111)) and for deciding on the state of the process X(t) at an arbitrary moment t. The algorithms were implemented by C# programming language in Visual Studio 2013. Statistical experiments were conducted on the imitational model to establish the frequency of making erroneous decisions about the state of the process X(t), the numerical results of which are given in the paper and illustrate an acceptable estimate of the total probability of making the erroneous decision.
Keywords
непродлевающееся мертвое время,
полусинхронный поток событий второго порядка,
оптимальное оценивание состояний,
апостериорные вероятности,
метод максимума апостериорной вероятности,
semi-synchronous event flow of the second order,
unextendable dead time,
optimal state estimation,
posterior probabilities,
maximum method of a posteriori probabilityAuthors
Nezhel'skaya Lyudmila A. | Tomsk State University | ludne@mail.tsu.ru |
Tumashkina Diana A. | Tomsk State University | diana1323@mail.ru |
Всего: 2
References
Соболь И.М. Численные методы Монте-Карло. М. : Наука, 1973. 312 с.
Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М. : Наука, 1969. 424 с.
Левин Б.Р. Теоретические основы статистической радиотехники. М. : Сов. радио, 1968. 504 с.
Хазен Э.М. Методы оптимальных статистических решений и задачи оптимального управления. М. : Сов. радио, 1968. 256 с.
Bakholdina M., Gortsev A. Joint probability density of the intervals length of the modulated semy-synchronous integrated flow of events and its recurrence conditions // Communications in Computer and Information Science. 2014. V. 487. P. 18-25.
Vasil'eva L.A., Gortsev A.M. Estimation of parameters of a double-stochastic flow of events under conditions of its incomplete observability // Automation and Remote Control. 2002. V. 63, is. 3. P. 511-515.
Gortsev A.M., Klimov I.S. Estimation of intensity of Poisson stream of events for conditions under which it is partially unobserv-able // Telecommunications and Radio Engineering. 1992. V. 47, is. 1. P. 33-38.
Gortsev A.M., Klimov I.S. Estimation of the parameters of an alternating Poisson stream of events // Telecommunications and Radio Engineering. 1993. V. 48, is. 10. P. 40-45.
Gortsev A.M., Nezhel'skaya L.A. Estimate of parameters of synchronously alternating Poisson stream of events by the moment method // Telecommunications and Radio Engineering. 1996. V. 50, is. 1. P. 56-63.
Бушланов И.В., Горцев А.М., Нежельская Л.А. Оценка параметров синхронного дважды стохастического потока событий // Автоматика и телемеханика. 2008. № 9. С. 76-93.
Nezhel'skaya L. Probability density function for modulated MAP event flows with unextendable dead time // Communications in Computer and Information Science. 2015. V. 564. P. 141-151.
Нежельская Л.А., Тумашкина Д.А. Оптимальное оценивание состояний полусинхронного потока событий второго порядка // Труды Томского государственного университета. Сер. физико-математическая. Томск : Изд. Дом ТГУ, 2017. Т. 301. С. 97-105.
Nezhelskaya L., Tumashkina D. Optimal state estimation of semi-synchronous event flow of the second order under its complete observability // Communications in Computer and Information Science. 2018. V. 912. P. 93-105.
Nezhelskaya L. Optimal state estimation in modulated MAP event flows with unextendable dead time // Communications in Computer and Information Science. 2014. V. 487. P. 342-350.
Апанасович В.В., Коляда А.А., Чернявский А.Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск : Университетское, 1988. 256 с.
Basharin G.P., Gaidamaka Yu.V., Samouylov K.E. Mathematical theory of teletraffic and its application to the analysis of multi service communication of the next generation networks // Automatic Control and Computer Sciences. 2013. V. 47, No. 2. P. 62-69.
Lucantoni D.M. New results on the single server queue with a bath markovian arrival process // Communications in Statistics Sto chastic Models. 1991. V. 7. P. 1-46.
Дудин А.Н., Клименок В.И. Системы массового обслуживания с коррелированными потоками. Минск : Изд-во Белорус. гос. ун-та, 2000. 175 с.
Kingman J.F.C. On doubly stochastic Poisson process // Proceedings of the Cambridge Philosophical Society. 1964. V. 60, is. 4. P. 923-930.
Cox D.R. The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables // Proceedings of the Cambridge Philosophical Society. 1955. V. 51, No. 3. P. 433-441.
Neuts M.F. A versatile Markov point process // Journal of Applied Probability. 1979. V. 16. P. 764-779.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 2 // Изве стия АН СССР. Техническая кибернетика. 1980. № 1. С. 55-61.
Башарин Г.П., Кокотушкин В.А., Наумов В.А. О методе эквивалентных замен расчета фрагментов сетей связи. Ч. 1 // Изве стия АН СССР. Техническая кибернетика. 1979. № 6. С. 92-99.