Modeling the effect of centering of a spherical hydrodynamic suspension
Based on the methods of asymptotic integration in the case when the decentering force is orthogonal to the sensitivity axis, the fast centering of the spherical hydrodynamic suspension at large values of the oscillatory Reynolds number is shown. It is shown that, up to the constant factor, the asymptotics of the dependence of the relative eccentricity on the oscillatory Reynolds number is similar to the results obtained earlier for cylindrical hydrodynamic suspension.
Keywords
asymptotic integration,
spherical hydrodynamic suspension,
асимптотическое интегрирование,
сферический гидродинамический подвесAuthors
Andreichenko Dmitry K. | Saratov State University | andreichenkodk@gmail.com |
Andreichenko Konstantin P. | Yuri Gagarin State Technical University of Saratov | kp_andreichenko@renet.ru |
Melnicnuk Dmitry V. | Saratov State University | melnichukdv@sgu.ru 21 |
Всего: 3
References
Andreichenko, K.P. (1987) Dinamika poplavkovykh giroskopov i akselerometrov [Dynamics of float gyroscopes and accelerome ters]. Mocsow: Mashinostroenie.
Andreichenko, D.K. & Andreichenko, K.P. (2009) On the theory of stability of a cylindrical hydrodynamic suspension. Fluid Dynamics. 44(1). pp. 10-21. DOI: https://doi.org/10.1134/S001546280
Sauret, A. & Le Dizes, S. (2013) Libration-induced mean flow in a spherical shell. Journal ofFluid Mechanics. 718. pp. 181-209. DOI: 10.1017/jfm.2012.604
Rietord, M. & Valdettaro, L. (2018) Axisymmetric inertial modes in a spherical shell at low Ekman numbers. Journal of Fluid Mechanics. 844. pp. 597-634. DOI: 10.1017/jfm.2018.201
Bank, A., Triana, S.A., Hoff, M. & Wicht, J. (2018) Triadic resonances in the wide-gap spherical Couette system. Journal of Fluid Mechanics. 843. pp. 211-243. DOI: 10.1017/jfm.2018.138
Sauret, A., Cebron, D., Morize, C. & Le Bars, M. (2010) Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity. Journal ofFluid Mechanics. 662. pp. 260-268. DOI: 10.1017/S0022112010004052
Noir, J., Hemmerlin, F., Wicht, J., Baca, S.M. & Arnou, S.M. (2009) An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Physics of the Earth and Planetary Interiors. 173. pp. 141-152. DOI: 10.1016/j.pepi.2008.11.012
Le Dizes, S. & Le Bars, M. (2017) Internal shear layer from liberating objects. Journal ofFluid Mechanics. 826. pp. 653-675.
Wu, K., Welfer, B.D. & Lopez, J.M. (2018) Librational forcing of a rapidly rotating fluid-filled cube. Journal of Fluid Mechanics. pp. 469-494. DOI: 10.1017/jfm.2018.157
Zhilenko, D.Yu. & Krivonosova, O.E. (2016) Enhancement of waves at rotational oscillations of a liquid. JETP Letters. 104(8). pp. 531-538. DOI: 10.1134/S0021364016200133
Zhilenko, D.Yu. & Krivonosova, O.E. (2015) Quasi-two-dimensional and three-dimensional turbulence in rotational spherical liquid layers. JETP Letters. 101(8). pp. 527-532. DOI: 10.7868/S0370274X15080044
Zhilenko, D.Yu. & Krivonosova, O.E. (2013) Transitions to chaos in the spherical Couette flow due to periodic variations in the rotation velocity of one of the boundaries. Fluid Dynamics. 48(4). pp. 452-460.
Zhilenko, D.Yu. & Krivonosova, O.E. (2011) Direct calculation of transition to one of two possible secondary flows in a wide spherical layer under the action of accelerated rotation of the inner sphere. Fluid Dynamics. 46(3). pp. 363-374. DOI: 10.1134/S0015462811030021
Zhilenko, D.Yu., Krivonosova, O.E. & Nikitin, N.V. (2008) On chaotic flow regimes in a rotating spherical layer. Technical Physics Letters. 34(12). pp. 1047-1049. DOI: 10.1134/S1063785008120171
Melnichuk, D.V., Andreichenko, D.K. & Andreichenko, K.P. (2018) [Refined mathematical model of a spherical hydrodynamic suspension]. Komp'yuternye nauki i informatsionnye tekhnologii [Computer Science and Informational Technology]. Proceedings of the International Conference]. Saratov. pp. 264-268.