Optimization of geometry in TDoA method for navigation and detection | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/5

Optimization of geometry in TDoA method for navigation and detection

The problem of optimizing the geometry of the differential-rangefinder method in navigation / detection is considered. Absolute lower bounds for geometric factors are obtained for any number of beacons / receivers. Samples of optimal geometric configurations of beacons / receivers have been constructed in cases that have not been mastered until now with 5, 7, 9 beacons / receivers. The problem of optimizing the geometry of the difference-ranging method is completely solved. The result is obtained by operations with B-matrices (building matrix).

Download file
Counter downloads: 138

Keywords

разностно-дальномерная задача, геометрические факторы, минимизация, В-матрицы, TDoA problem, geometric factors, minimization, В-matrices

Authors

NameOrganizationE-mail
Barabanova Lubov P.Kovrov State Technological Academylpbarabanova@yandex.ru
Всего: 1

References

Lee H.B. Accuracy Limitations of Hyperbolic Multilateration Systems // IEEE Transactions on Aerospace and Electronic Systems. 1975. V. AES-114, No. 1. P. 16-29.
Yarlagadda R., Ali I., Al-Dhahir N., Hershey J. GPS GDOP metric // IEEE Proceedings Radar Sonar and Navigation. 2000. V. 147, No. 5. P. 259-264.
Барабанова Л.П. К минимизации геометрических факторов GNSS // Известия РАН. Теория и системы управления. 2010. № 2. С. 145-132.
Xue S., Yang Y. Positioning configurations with the lowest GDOP and their classification // J. Geodesy. 2015. V. 89, No. 1. P. 49-71.
Xue S., Yang Y. Understanding GDOP minimization in GNSS positioning: Infinite solutions, finite solutions and no solution // Advances in Space Research. 2017. V. 59, No. 3. P. 775-785.
Liu B., Teng Y., Huang Q. GDOP minimum in multi-GNSS positioning // Advances in Space Research. 2017. V. 60, No. 7. P. 1400-1403.
Han S., Gui Q., Li G., Du Y. Minimum of PDOP and its applications in inter-satellite links (ISL) establishment of Walker-5 con stellation // Advances in Space Research. 2014. V. 54, No. 4. P. 726-733.
Swaszek P.F., Hartnett R.J., Seals K.C. Lower Bounds on DOP // J. of Navigation. 2017. V. 70, No. 5. P. 1041-1061.
Барабанов О.О., Барабанова Л.П. Математические задачи дальномерной навигации. М. : Физматлит, 2007. 272 c.
Колмогоров А.Н., Петров А.А., Смирнов Ю.М. Одна формула Гаусса из теории наименьших квадратов // Известия АН СССР. Сер. математическая. 1947. № 11. C. 561-566.
Мальцев А.И. Замечание к работе А.Н. Колмогорова, А.А. Петрова, Ю.М. Смирнова «Одна формула Гаусса из теории наименьших квадратов» // Известия АН СССР. Сер. математическая. 1947. № 11. C. 567-568.
Барабанов О.О., Барабанова Л.П. О строящих матрицах в теории метода наименьших квадратов // Известия вузов. Математика. 2019. № 4. С. 27-35.
 Optimization of geometry in TDoA method for navigation and detection | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/5

Optimization of geometry in TDoA method for navigation and detection | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2020. № 52. DOI: 10.17223/19988605/52/5

Download full-text version
Counter downloads: 276