Comparison of the algorithm of multiscale image analysis in the frequency domain with the Mall algorithm | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 59. DOI: 10.17223/19988605/59/8

Comparison of the algorithm of multiscale image analysis in the frequency domain with the Mall algorithm

This paper compares the algorithm for multiplescale analysis of images in the frequency domain with the Mall algorithm. The Mall algorithm uses scaling factors multiple of 2 and computation is performed iteratively with twofold thinning of the wavelet coefficients at each subsequent decomposition. This algorithm is also called fast discrete wavelet transform. The frequency domain multiplexing algorithm uses the fast Fourier transform (FFT) to increase computational speed. The wavelet coefficients are not calculated iteratively, but for each level they are obtained from the signal independently of the previous levels and the multiplicity of analysis can be less than 2. Reducing the multiplicity allows increasing the decomposition depth. In contrast to Mall's algorithm, symmetric or antisymmetric orthogonal wavelets are used, which increases the accuracy of reconstruction. The image is processed not by rows and columns, but by progressive sweep as a whole. Application of FFT reduces the image transformation time by four orders of magnitude compared to the direct numerical integration, and due to this the decomposition and reconstruction time is not longer compared to the discrete wavelet transform time and can be less. The author declares no conflicts of interests.

Download file
Counter downloads: 26

Keywords

wavelet transform, decomposition, reconstruction, multiscale analysis, Mall's algorithm, amplitude-frequency response, filter

Authors

NameOrganizationE-mail
Semenov Vladimir I.Chuvash State Universitysyundyukovo@yandex.ru
Всего: 1

References

Малла С. Вейвлеты в обработке сигналов : пер. с англ. М. : Мир, 2005. 671 с.
Новиков Л.В. Основы вейвлет-анализа сигналов. М. : ИАнП РАН, 1999. 152 с.
Митрофанов Г., Прийменко В. Основы и приложения метода Пронифильтрации // Технологии сейсморазведки. 2011. № 3. С. 93-108.
Mahmmod B.M., Abdul-Hadi A.M., Abdulhussain S.H., Hussien A. On computational aspects of Krawtchouk polynomials for high orders //j. Imag. 2020. V. 6, № 8. P. 81.
Abdulhussain S.H., Ramli A.R., Mahmmod B.M., Saripan M.I., Al-Haddad S.A.R., Jassim W.A. A new hybrid form of Kraw tchouk and Tchebichef polynomials: Design and application //j. Math. Imag. Vis. 2019. V. 61, № 4. P. 555-570.
Дремин И.Л., Иванов О.В., Нечитайло В.А. Вейвлеты и их использование // УФН. 2001. Т. 171, № 5. С. 465-501.
Добеши И. Десять лекций по вейвлетам. М.-Ижевск : Регулярная и хаотическая динамика, 2001. 464 с.
Столниц Э., Де Роуз Е., Салезин Д. Вейвлеты в компьютерной графике. М.-Ижевск : Регулярная и хаотическая динамика, 2002. 271 с.
Семенов В.И., Михеев К.Г., Шурбин А.К., Михеев Г.М. Фильтрация изображений, полученных с помощью оптического микроскопа, с применением кратномасштабного анализа // Химическая физика и мезоскопия. 2014. Т. 16, № 3. С. 399-404.
Семенов В.И., Шурбин А.К., Михеев К.Г., Михеев Г.М. Конструирование ортогональных вейвлетов в частотной области для кратномасштабного анализа сигналов // Химическая физика и мезоскопия. 2018. Т. 20, № 2. С. 230-238.
Шумарова О.С., Игнатьев С.А. Оптимальный выбор вида вейвлета при обработке сигнала с вихретокового датчика // Вестник Саратовского государственного технического университета. 2013. № 4 (73). С. 128-132.
Умняшкин С.В. Теоретические основы цифровой обработки и представления сигналов. М. : ФОРУМ-ИНФРА-М, 2009. 302 с.
 Comparison of the algorithm of multiscale image analysis in the frequency domain with the Mall algorithm | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 59. DOI: 10.17223/19988605/59/8

Comparison of the algorithm of multiscale image analysis in the frequency domain with the Mall algorithm | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2022. № 59. DOI: 10.17223/19988605/59/8

Download full-text version
Counter downloads: 182