Parameter estimation for hyperexponential distribution | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/5

Parameter estimation for hyperexponential distribution

The problem of the parameter estimation for the hyperexponential distribution is considered. The method of moments and the maximum likelihood method are used, explicit intensity estimators for a distribution with two intensity values are constructed. The conditions for the applicability of the method of moments are obtained and its comparison with a new method combining the method of moments and the maximum likelihood method is carried out. The possibility of estimating the minimum intensity parameter in the case of an arbitrary number of parameters of a hyperexponential distribution is shown. Numerical modeling shows the applicability of the developed estimation algorithms. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 8

Keywords

hyperexponential distribution, method of moments, maximum likelihood method

Authors

NameOrganizationE-mail
Burkatovskaya Yulia B.Tomsk Polytechnic University; Tomsk State Universitytracey@tpu.ru
Vorobeychikov Sergey E.Tomsk State Universitysev@mail.tsu.ru
Всего: 2

References

Chen J., Gupta A.K. Parametric statistical change point analysis with applications to genetics, medicine, and finance. 2nd ed. Springer Science + Business Media, LLC. 2012.
Dempster A.P., Laird N.M., Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm // Journal of the Royal Statistical Society. Series B. 1977. V. 39 (1). P. 1-38.
Baum L.E., Petrie T., Soules G., Weiss N. A maximization technique occurring in the statistical analysis of probabilistic function of Markov chains // Annals of Mathematical Statistics. 1970. V. 41 (1). P. 164-171.
Elliott R.J., Malcolm W.P. Discrete time expectation maximization algorithms for markov modulated poisson processes // IEEE Transactions on Automatic Control. 2002. V. 53. P. 247-256.
Breuer L., Kume A. An EM algorithm for markovian arrival processes observed at discrete times // Measurement, Modelling, and Evaluation of Computing Systems and Dependability and Fault Tolerance. MMB&DFT / B. Muller-Clostermann, K. Echtle, E.P. Rathgeb (eds.). Berlin; Heidelberg: Springer, 2010. P. 242-258. (Lecture Notes in Computer Science, v. 5987).
Horvath G., Okamura H. A fast EM algorithm for fitting marked markovian arrival processes with a new special structure // Computer Performance Engineering. EPEW 2013 / M.S. Balsamo, W.J. Knottenbelt, A. Marin (eds.). Berlin; Heidelberg: Springer, 2013. P. 119-133. (Lecture Notes in Computer Science; v. 8168).
Brazenas M., Horvath G., Telek M. Efficient implementations of the EM-Algorithm for transient markovian arrival processes // Analytical and Stochastic Modelling Techniques and Applications. ASMTA / S. Wittevrongel, T. Phung-Duc (eds.). Cham: Springer, 2016. P. 107-122. (Lecture Notes in Computer Science; v. 9845).
Королев В.Ю. ЕМ-алгоритм, его модификации и их применение к задаче разделения смесей вероятностных распределе ний: теоретический обзор. М.: Изд-во ИПИ РАН, 2007.
Королев В.Ю., Назаров А.Л. Разделение смесей вероятностных распределений при помощи сеточных методов моментов и максимального правдоподобия // Автоматика и телемеханика. 2010. № 3. С. 98-116.
Feldmann A., Whitt W. Fitting mixtures of exponentials to long-tail distributions to analyze network performance models // Performance Evaluation. 1998. V. 31. P. 245-279.
Petcharat K., Areepong Yu., Sukparungsee S., Mititelu G. Fitting Pareto Distribution with Hyperexponential to Evaluate the ARL for CUSUM Chart // International Journal of Pure and Applied Mathematics. 2012. V. 77 (2). P. 233-244.
Singh L.N., Dattatreya G.R. Estimation of the Hyperexponential Density with Applications in Sensor Networks // International Journal of Distributed Sensor Networks. 2002. V. 3. P. 311-330.
Guillou A., Loisel S., Stupfler G. Estimating the parameters of a seasonal Markov-modulated Poisson process // Statistical Methodology. Elsevier, 2015. V. 26. P. 103-123.
Gunsta M., Knapika B., Mandjesb M., Solliea B. Parameter estimation for a discretely observed population process under Markov-modulation // Computational Statistics & Data Analysis. 2019. V. 140. P. 88-103.
 Parameter estimation for hyperexponential distribution | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/5

Parameter estimation for hyperexponential distribution | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 70. DOI: 10.17223/19988605/70/5

Download full-text version
Counter downloads: 64