Formulas for inverting square matrices divided into rectangular blocks and their application in modal control | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 71. DOI: 10.17223/19988605/71/1

Formulas for inverting square matrices divided into rectangular blocks and their application in modal control

New formulas for inverting square matrices divided into rectangular blocks by rows or columns are obtained. Along with Frobenius formulas, where diagonal blocks are square, the new formulas constructed using matrix zero divisors make it possible to simplify inverting a block matrix of large dimensions by inverting two matrices of smaller dimensions. The formulas are applicable for inverting matrices written both in numerical (real or complex) and analytical (symbolic) form. For a certain wide class of linear time-invariant dynamic systems, compact analytical algorithms for calculating feedback matrices at solving control problems and evaluating components of the state vector are obtained using new formulas of block inversion. These algorithms are to simplify the generalized formulas of Bass -Gura and Ackermann both in direct and in dual versions. Examples of inverting some matrices divided into rectangular blocks are given for both a numerical matrix with complex-valued elements and a symbolic matrix. The problem of modal control of an aircraft spatial motion is solved using the proposed simplification of the generalized Ackermann formula and zeroing the required components of the controller matrix due to convenient parameterization, which does not affect the poles location. Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Download file
Counter downloads: 6

Keywords

block matrix, rectangular block, block inversion, matrix zero divisor, modal control, generalized Bass-Gura formula, generalized Ackermann formula

Authors

NameOrganizationE-mail
Zubov Nikolay E.Bauman Moscow State Technical Universitynik.zubov@gmail.com
Lapin Alexey V.Bauman Moscow State Technical UniversityAlexeyPoeme@yandex.ru
Ryabchenko Vladimir N.Bauman Moscow State Technical Universityryabchenko.vn@mail.ru
Всего: 3

References

Zhou H., Yang D., Lin Y., Dai Y., Chen Q. A Parallel Acceleration Technique based on Bordered Block Diagonal Matrix Reor dering for Exponential Integrator Method // 2nd Int. Symp. of Electronics Design Automation. 2024. P. 94-99. doi: 10.1109/ISEDA62518.2024.10617631.
Dogruer C.U., Yildirim B. Switching Optimal Modal Control of Linear Time-Invariant Model of a Structural System // 25th Int. Conf. on Syst. Theory, Control and Computing. 2021. P. 220-226. doi: 10.1109/ICSTCC52150.2021.9607184.
Зубов Н.Е., Лапин А.В., Рябченко В.Н., Аналитический алгоритм построения орбитальной ориентации космического аппа рата при неполном измерении компонент вектора состояния // Известия РАН. Теория и система: управления. 2019. № 6. C. 128-138. doi: 10.1134/S0002338819040176.
Zybin E.Yu., Kosyanchuk V.V., Karpenko S.S. Quantitative Model-Free Method for Aircraft Control System Failure Detection // MATEC Web of Conf. 2017. V. 99. Art. 03011. P. 1-3. doi: 10.1051/matecconf/20179903011.
Kosyanchuk V.V., Selvesyuk N.I., Kulchak A.M. Aircraft Control Law Reconfiguration // Aviation. 2015. V. 19, is. 1. P. 14-18. doi: 10.3846/16487788.2015.1015290.
Qin Y., Feng G., Ren Y., Zhang X. Block-Diagonal Guided Symmetric Nonnegative Matrix Factorization // IEEE Transactions on Knowledge and Data Engineering. 2023 V. 35, is. 3. P. 2313-2325. doi: 10.1109/TKDE.2021.3113943.
Gantmacher F.R. The Theory of Matrices. Providence : AMS Chelsea Publishing, 2000.
Lapin A.V., Zubov N.E. Generalization of Bass-Gura Formula for Linear Dynamic Systems with Vector Control // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2020. V. 89, is. 2. P. 41-64. doi: 10.18698/1812-3368-2020-2-41-64.
Лапин А.В., Зубов Н.Е., Пролетарский А.В. Обобщение формулы Аккермана для некоторого класса многомерных динами ческих систем с векторным входом // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2023. № 4 (109). С. 1838. doi: 10.18698/1812-3368-2023-4-18-38.
Bernstein D.S. Matrix Mathematics. Princeton, NJ : Princeton University Press, 2005.
Воеводин В.В., Кузнецов Ю.А. Матрица: и вычисления. М. : Наука, 1984.
Мисриханов М.Ш., Рябченко В.Н. Блочное решение алгебраических уравнений при расчетах электрических сетей и систем // Вестник Тамбовского государственного технического университета. 2004. № 7 (42). С. 29-42.
Горюнов С.В., Буков В.Н. Обращение и канонизация блочных матриц // Математические заметки. 2006. T. 79, № 5. С. 662-673.
Зубов Н.Е., Микрин Е.А., Рябченко В.Н. Матричные методы в теории и практике систем автоматического управления летательных аппаратов. М. : Изд-во МГТУ им. Н.Э. Баумана, 2016.
Kosyanchuk V.V., Zheltov Yu S., Zybin E.Yu. Aircraft Flight Control System Fault Tolerance under Structural and Parametric Uncertainties // J. Phys.: Conf. Ser. 2021. V. 1864. P. 1-12. doi: 10.1088/1742-6596/1864/1/012005.
Ling J., Ji H., Yu C., Wang S., Yu D., Jiang S. Design of UPFC Sub-Synchronous Oscillation Damping Controller Based on Modal Control // China Int. Conf. on Electricity Distribution. 2018. P. 1439-1443. doi: 10.1109/CICED.2018.8592538.
Dobroskok N.A., Vtorov V.B. Robust Pole Assignment in a Problem of State Observer-Based Modal Control // IV Int. Conf. on Control in Technical Syst. 2021. P. 30-33. doi: 10.1109/CTS53513.2021.9562851.
Zong Q., Tian K., Zuo Q., Wang W. A Similarity Measurement Model of Complex Polygon with Holes Based on Fuzzy Matrix and Similarity Transformation // 3rd Int. Conf. on Geology, Mapping and Remote Sensing. 2022. P. 249-252. doi: 10.1109/ICGMRS55602.2022.9849295.
Kisacanin B., Agarwal G.C. Linear Control Systems: With Solved Problems and MATLAB Examples. New York : Kluwer Academic / Plenum Publishers, 2002.
Буков В.Н. Адаптивные прогнозирующие система: управления полетом. М. : Наука, 1987.
Nie F., Wang H., Cai X., Huang H., Ding C. Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization // IEEE 12th Int. Conf. on Data Mining. 2012. P. 566-574. doi: 10.1109/ICDM.2012.160.
Lapin A.V., Zubov N.E. Parametric Synthesis of Modal Control with Output Feedback for Descent Module Attitude Stabilization // 2019 Int.Russian Automation Conf. 2019. P. 1-6. doi: 10.1109/RusAutoCon.2019.8867744.
Lapin A.V., Zubov N.E. Analytic Solution of the Problem of Stabilizing Orbital Orientation of a Spacecraft with Flywheel Engines // AIP Conf. Proc. 2021. V. 2318, is. 1. Art. 130009. P. 1-8. doi: 10.1063/5.0036155.
 Formulas for inverting square matrices divided into rectangular blocks and their application in modal control | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 71. DOI: 10.17223/19988605/71/1

Formulas for inverting square matrices divided into rectangular blocks and their application in modal control | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2025. № 71. DOI: 10.17223/19988605/71/1

Download full-text version
Counter downloads: 36