Representations of joint probability densities for interest rate stochasticprocesses | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2009. № 1 (6).

Representations of joint probability densities for interest rate stochasticprocesses

Joint probability densities of some diffusion processes are represented as a mix of distributions. The mixing random variable has negative binomial distribution, and under the fixed value of a mixing random variable the joint density become a product marginal, i.e. values of process at the various moments of time as though become "independent", and it turns out, that the mixing random variable "regulates" dependence between different values of process.

Download file
Counter downloads: 326

Keywords

mix of probability densities , diffusion stochastic process , Joint probability density , смеси плотностей вероятностей , диффузионные случайные процессы , совместные плотности вероятностей

Authors

NameOrganizationE-mail
Medvedev G.A. Byelorussian State University MedvedevGA@Cosmostv.by
Всего: 1

References

Ширяев А.Н. Основы стохастической финансовой математики. Т. 1. - М: ФАЗИС, 1998. 512 с.
Williams D. Path decomposition and continuity of local time for one-dimensional diffusions // Proc. London Math. Soc. 1973. V. 28. No. 3. Р. 738 - 768.
Медведев Г.А. Сравнительный анализ стохастических нелинейных моделей процентных ставок // Экономика и управление. 2008. № 2. С. 94 - 103.
Ahn D.-H., Gao B. A parametric nonlinear model of term structure dynamics // The Rev. Finan. Studies. 1999. V. 12. No. 4. P. 721 - 762.
Медведев Г.А. Стохастические процессы финансовой математики. Минск: Изд-во БГУ, 2005. 243 с.
Feller W. Two singular diffusion problems // Ann. Math 1951. V. 54. No. 1. Р. 173 -182.
Cox J.C., Ingersoll J.E., Ross S.A. A Theory of the term structure of interest rate // Econometrica. V. 53. 1985. Р. 385 - 467.
Primak S., Kontorovich V., Lyandres V. Stochastic Methods and Their Applications. Chichester: John Wiley & Sons, 2004. 439 р.
Merton R.C. Continuous-Time Finance. N.Y.: Oxford University Press, 1990. 720 p.
Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 736 с.
Merton R.C. Lifetime portfolio selection under uncertainty: the continuous time case // Rev. Econom. Statist. 1969. V. 51. P. 247 - 257.
Samuelson P.A. Rational theory of warrant pricing // Industr. Managern. Rev. 1965. V. 6. P. 13 - 31.
Bachelier L. Théorie de la spéculation // Annales de l'Ecole Normale Supérieure. 1900. V. 17. P. 21 - 86.
 Representations of joint probability densities for interest rate stochasticprocesses             | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2009. № 1 (6).

Representations of joint probability densities for interest rate stochasticprocesses | Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 2009. № 1 (6).

Download file